Wang Zhong, Xu Ke, Zhang Xinyu, Wu Xiaowei, Wang Zuoheng
Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.
Genet Epidemiol. 2017 Jan;41(1):81-93. doi: 10.1002/gepi.22016. Epub 2016 Nov 9.
Many genetic epidemiological studies collect repeated measurements over time. This design not only provides a more accurate assessment of disease condition, but allows us to explore the genetic influence on disease development and progression. Thus, it is of great interest to study the longitudinal contribution of genes to disease susceptibility. Most association testing methods for longitudinal phenotypes are developed for single variant, and may have limited power to detect association, especially for variants with low minor allele frequency. We propose Longitudinal SNP-set/sequence kernel association test (LSKAT), a robust, mixed-effects method for association testing of rare and common variants with longitudinal quantitative phenotypes. LSKAT uses several random effects to account for the within-subject correlation in longitudinal data, and allows for adjustment for both static and time-varying covariates. We also present a longitudinal trait burden test (LBT), where we test association between the trait and the burden score in linear mixed models. In simulation studies, we demonstrate that LBT achieves high power when variants are almost all deleterious or all protective, while LSKAT performs well in a wide range of genetic models. By making full use of trait values from repeated measures, LSKAT is more powerful than several tests applied to a single measurement or average over all time points. Moreover, LSKAT is robust to misspecification of the covariance structure. We apply the LSKAT and LBT methods to detect association with longitudinally measured body mass index in the Framingham Heart Study, where we are able to replicate association with a circadian gene NR1D2.
许多遗传流行病学研究都会随时间收集重复测量数据。这种设计不仅能更准确地评估疾病状况,还能让我们探究基因对疾病发展和进展的影响。因此,研究基因对疾病易感性的纵向影响具有重要意义。大多数针对纵向表型的关联检验方法都是针对单变异体开发的,检测关联的能力可能有限,尤其是对于次要等位基因频率较低的变异体。我们提出了纵向单核苷酸多态性集/序列核关联检验(LSKAT),这是一种用于罕见和常见变异体与纵向定量表型进行关联检验的稳健的混合效应方法。LSKAT使用多个随机效应来考虑纵向数据中受试者内部的相关性,并允许对静态和随时间变化的协变量进行调整。我们还提出了一种纵向性状负担检验(LBT),即在线性混合模型中检验性状与负担评分之间的关联。在模拟研究中,我们证明当变异体几乎全是有害的或全是保护性的时,LBT具有较高的检验效能,而LSKAT在广泛的遗传模型中表现良好。通过充分利用重复测量的性状值,LSKAT比应用于单次测量或所有时间点平均值的几种检验更具检验效能。此外,LSKAT对协方差结构的错误设定具有稳健性。我们将LSKAT和LBT方法应用于弗雷明汉心脏研究中,以检测与纵向测量的体重指数的关联,在该研究中我们能够重复与昼夜节律基因NR1D2的关联。