Suppr超能文献

功能线性模型在数量性状关联分析中的应用。

Functional linear models for association analysis of quantitative traits.

机构信息

Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, United States of America.

出版信息

Genet Epidemiol. 2013 Nov;37(7):726-42. doi: 10.1002/gepi.21757.

Abstract

Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study.

摘要

本文发展了功能线性模型,用于检验数量性状与遗传变异之间的关联,这些遗传变异可以是罕见变异或常见变异,也可以是两者的组合。通过将人群中个体的多个遗传变异视为随机过程的实现,个体的基因组在染色体区域中是一个连续的序列数据,而不是离散的观察值。个体的基因组被视为包含遗传标记的连锁和连锁不平衡(LD)信息的随机函数。通过使用功能数据分析技术,构建了固定效应和混合效应功能线性模型,以调整协变量后检验数量性状与遗传变异之间的关联。经过广泛的模拟分析,结果表明,在所提出的固定效应功能线性模型的 F 分布检验中,在大多数情况下,对于三种情况(1)因果变异均为罕见,(2)因果变异均为罕见和常见,(3)因果变异均为常见,其功效均高于序列核关联检验(SKAT)及其最优统一检验(SKAT-O):(1)因果变异均为罕见,(2)因果变异均为罕见和常见,(3)因果变异均为常见。固定效应功能线性模型的优越性能很可能是由于其最佳利用了基因组中多个遗传变异的遗传连锁和 LD 信息以及不同个体之间的相似性,而 SKAT 和 SKAT-O 仅对相似性和成对 LD 进行建模,但对连锁和高阶 LD 信息建模不足。此外,在模拟研究中,所提出的固定效应模型产生了准确的Ⅰ型错误率。我们还表明,所提出的混合效应功能线性模型的功能核得分检验在候选基因分析和小样本问题中更优。该方法应用于分析 Trinity Students Study 数据中的三个生化特征。

相似文献

1
Functional linear models for association analysis of quantitative traits.
Genet Epidemiol. 2013 Nov;37(7):726-42. doi: 10.1002/gepi.21757.
2
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.
3
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Genet Epidemiol. 2015 May;39(4):259-75. doi: 10.1002/gepi.21895. Epub 2015 Mar 23.
4
Generalized functional linear models for gene-based case-control association studies.
Genet Epidemiol. 2014 Nov;38(7):622-637. doi: 10.1002/gepi.21840. Epub 2014 Sep 9.
6
Longitudinal association analysis of quantitative traits.
Genet Epidemiol. 2012 Dec;36(8):856-69. doi: 10.1002/gepi.21673. Epub 2012 Sep 10.
7
Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.
Genetics. 2016 Feb;202(2):457-70. doi: 10.1534/genetics.115.180869. Epub 2015 Dec 29.
8
Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.
Genet Epidemiol. 2017 Feb;41(2):108-121. doi: 10.1002/gepi.22024. Epub 2016 Nov 25.
9
Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.
Genet Epidemiol. 2015 Jul;39(5):366-75. doi: 10.1002/gepi.21901. Epub 2015 Apr 17.
10
Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.
Genet Epidemiol. 2016 Feb;40(2):133-43. doi: 10.1002/gepi.21947. Epub 2016 Jan 18.

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
2
Locally sparse quantile estimation for a partially functional interaction model.
Comput Stat Data Anal. 2023 Oct;186. doi: 10.1016/j.csda.2023.107782. Epub 2023 May 25.
3
AIGen: an artificial intelligence software for complex genetic data analysis.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae566.
5
Multimodal functional deep learning for multiomics data.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae448.
6
Functional Neural Networks for High-Dimensional Genetic Data Analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2024 May-Jun;21(3):383-393. doi: 10.1109/TCBB.2024.3364614. Epub 2024 Jun 5.
7
FunctanSNP: an R package for functional analysis of dense SNP data (with interactions).
Bioinformatics. 2023 Dec 1;39(12). doi: 10.1093/bioinformatics/btad741.
9
Bi-level structured functional analysis for genome-wide association studies.
Biometrics. 2023 Dec;79(4):3359-3373. doi: 10.1111/biom.13871. Epub 2023 May 7.

本文引用的文献

1
Detecting rare variant effects using extreme phenotype sampling in sequencing association studies.
Genet Epidemiol. 2013 Feb;37(2):142-51. doi: 10.1002/gepi.21699. Epub 2012 Nov 26.
2
Quantitative trait locus analysis for next-generation sequencing with the functional linear models.
J Med Genet. 2012 Aug;49(8):513-24. doi: 10.1136/jmedgenet-2012-100798.
4
Smoothed functional principal component analysis for testing association of the entire allelic spectrum of genetic variation.
Eur J Hum Genet. 2013 Feb;21(2):217-24. doi: 10.1038/ejhg.2012.141. Epub 2012 Jul 11.
5
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
6
Exome sequencing and the genetic basis of complex traits.
Nat Genet. 2012 May 29;44(6):623-30. doi: 10.1038/ng.2303.
7
Penalized Functional Regression.
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
8
Next generation analytic tools for large scale genetic epidemiology studies of complex diseases.
Genet Epidemiol. 2012 Jan;36(1):22-35. doi: 10.1002/gepi.20652. Epub 2011 Dec 6.
9
A general framework for detecting disease associations with rare variants in sequencing studies.
Am J Hum Genet. 2011 Sep 9;89(3):354-67. doi: 10.1016/j.ajhg.2011.07.015. Epub 2011 Sep 1.
10
Bioinformatic and genetic association analysis of microRNA target sites in one-carbon metabolism genes.
PLoS One. 2011;6(7):e21851. doi: 10.1371/journal.pone.0021851. Epub 2011 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验