Suppr超能文献

增强KCNQ1编码的Kv7.1电压门控钾通道C末端突变的预测能力。

Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.

作者信息

Kapplinger Jamie D, Tseng Andrew S, Salisbury Benjamin A, Tester David J, Callis Thomas E, Alders Marielle, Wilde Arthur A M, Ackerman Michael J

机构信息

Mayo Medical School, Mayo Clinic, Rochester, MN, USA.

出版信息

J Cardiovasc Transl Res. 2015 Apr;8(3):187-97. doi: 10.1007/s12265-015-9622-8. Epub 2015 Apr 9.

Abstract

Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.

摘要

尽管在明确诊断为长QT综合征(LQTS)的患者中Kv7.1突变的比例过高,但在健康对照中观察到的无害Kv7.1错义变体的背景发生率,使得LQTS基因检测结果的解读存在模糊性。最近的一项研究表明,罕见错义突变的致病性概率部分取决于该变体在Kv7.1各个结构功能域中的拓扑位置。由于Kv7.1的C末端占整个蛋白质的近50%,且近50%的罕见变体背景发生率位于C末端,因此在突变检测方面的进一步改进,可能有助于区分导致致病性长QT综合征1型(LQT1)的突变与Kv7.1 C末端罕见的非致病变体。因此,我们利用保守性分析和一项大型病例对照研究,生成基于拓扑结构的估计预测值以辅助解读,确定了Kv7.1 C末端内具有高LQT1致病性概率的三个高度保守区域。

相似文献

1
Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.
J Cardiovasc Transl Res. 2015 Apr;8(3):187-97. doi: 10.1007/s12265-015-9622-8. Epub 2015 Apr 9.
3
Clinical characterization of type 1 long QT syndrome caused by C-terminus Kv7.1 variants.
Heart Rhythm. 2024 Jul;21(7):1113-1120. doi: 10.1016/j.hrthm.2024.02.021. Epub 2024 Feb 15.
4
Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.
Cardiovasc Res. 2014 Oct 1;104(1):216-25. doi: 10.1093/cvr/cvu191. Epub 2014 Aug 18.
5
Electrophysiological phenotype in the LQTS mutations Y111C and R518X in the KCNQ1 gene.
J Appl Physiol (1985). 2013 Nov;115(10):1423-32. doi: 10.1152/japplphysiol.00665.2013. Epub 2013 Sep 19.
7
Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene.
Circulation. 2007 May 15;115(19):2481-9. doi: 10.1161/CIRCULATIONAHA.106.665406. Epub 2007 Apr 30.
8
A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1.
Heart Vessels. 2019 Jan;34(1):177-188. doi: 10.1007/s00380-018-1223-4. Epub 2018 Jul 14.
10
Identification of Low-Risk Adult Congenital LQTS Patients.
J Cardiovasc Electrophysiol. 2015 Aug;26(8):853-858. doi: 10.1111/jce.12686. Epub 2015 May 28.

引用本文的文献

2
Functional Characterization of a Spectrum of Novel Romano-Ward Syndrome Variants.
Int J Mol Sci. 2023 Jan 10;24(2):1350. doi: 10.3390/ijms24021350.
3
Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome.
Circulation. 2020 Jul 28;142(4):324-338. doi: 10.1161/CIRCULATIONAHA.120.045956. Epub 2020 May 20.
4
Reclassification of genetic variants in children with long QT syndrome.
Mol Genet Genomic Med. 2020 Sep;8(9):e1300. doi: 10.1002/mgg3.1300. Epub 2020 May 8.
5
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183148. doi: 10.1016/j.bbamem.2019.183148. Epub 2019 Dec 9.
8
Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations.
Sci Adv. 2018 Mar 7;4(3):eaar2631. doi: 10.1126/sciadv.aar2631. eCollection 2018 Mar.
10
Inaccurate diagnosis of Brugada syndrome in a healthy woman based on SCN5A mutation classification.
HeartRhythm Case Rep. 2017 Aug 12;3(10):450-454. doi: 10.1016/j.hrcr.2017.06.003. eCollection 2017 Oct.

本文引用的文献

1
Bayesian models for syndrome- and gene-specific probabilities of novel variant pathogenicity.
Genome Med. 2015 Jan 28;7(1):5. doi: 10.1186/s13073-014-0120-4. eCollection 2015.
2
Distinguishing hypertrophic cardiomyopathy-associated mutations from background genetic noise.
J Cardiovasc Transl Res. 2014 Apr;7(3):347-61. doi: 10.1007/s12265-014-9542-z. Epub 2014 Feb 8.
3
Genotype- and phenotype-guided management of congenital long QT syndrome.
Curr Probl Cardiol. 2013 Oct;38(10):417-55. doi: 10.1016/j.cpcardiol.2013.08.001.
4
ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.
Genet Med. 2013 Jul;15(7):565-74. doi: 10.1038/gim.2013.73. Epub 2013 Jun 20.
5
An integrated map of genetic variation from 1,092 human genomes.
Nature. 2012 Nov 1;491(7422):56-65. doi: 10.1038/nature11632.
6
Genetics of cardiac electrical disease.
Can J Cardiol. 2013 Jan;29(1):89-99. doi: 10.1016/j.cjca.2012.07.847. Epub 2012 Oct 11.
7
Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome.
Circ Cardiovasc Genet. 2012 Oct 1;5(5):519-28. doi: 10.1161/CIRCGENETICS.112.963785. Epub 2012 Sep 4.
8
Paralogous annotation of disease-causing variants in long QT syndrome genes.
Hum Mutat. 2012 Aug;33(8):1188-1191. doi: 10.1002/humu.22114. Epub 2012 Jun 7.
9
High prevalence of genetic variants previously associated with LQT syndrome in new exome data.
Eur J Hum Genet. 2012 Aug;20(8):905-8. doi: 10.1038/ejhg.2012.23. Epub 2012 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验