Suppr超能文献

相似文献

1
Silk scaffolds with tunable mechanical capability for cell differentiation.
Acta Biomater. 2015 Jul;20:22-31. doi: 10.1016/j.actbio.2015.04.004. Epub 2015 Apr 7.
2
Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
Macromol Biosci. 2010 Mar 10;10(3):289-98. doi: 10.1002/mabi.200900258.
3
Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions.
J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):798-808. doi: 10.1002/jbm.b.34434. Epub 2019 Jun 17.
4
Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
Int J Biol Macromol. 2016 Jan;82:160-7. doi: 10.1016/j.ijbiomac.2015.08.001. Epub 2015 Aug 6.
5
Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
Int J Nanomedicine. 2016 Apr 11;11:1483-500. doi: 10.2147/IJN.S97445. eCollection 2016.
6
Silk porous scaffolds with nanofibrous microstructures and tunable properties.
Colloids Surf B Biointerfaces. 2014 Aug 1;120:28-37. doi: 10.1016/j.colsurfb.2014.03.027. Epub 2014 May 22.
7
Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
Int J Biol Macromol. 2017 Feb;95:14-23. doi: 10.1016/j.ijbiomac.2016.11.002. Epub 2016 Nov 3.
8
Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
Acta Biomater. 2012 Jan;8(1):289-301. doi: 10.1016/j.actbio.2011.09.037. Epub 2011 Oct 7.
9
Fabrication of Silk Scaffolds with Nanomicroscaled Structures and Tunable Stiffness.
Biomacromolecules. 2017 Jul 10;18(7):2073-2079. doi: 10.1021/acs.biomac.7b00406. Epub 2017 Jun 9.
10

引用本文的文献

1
Integrated approach to cell growth and recovery in silk fibroin scaffolds via a spin-down system.
Biomater Biosyst. 2025 Aug 11;19:100118. doi: 10.1016/j.bbiosy.2025.100118. eCollection 2025 Sep.
2
Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine.
Burns Trauma. 2024 Sep 30;12:tkae039. doi: 10.1093/burnst/tkae039. eCollection 2024.
3
Biodegradable Silk Fibroin Matrices for Wound Closure in a Human 3D Ex Vivo Approach.
Materials (Basel). 2024 Jun 19;17(12):3004. doi: 10.3390/ma17123004.
4
An overview of substrate stiffness guided cellular response and its applications in tissue regeneration.
Bioact Mater. 2021 Dec 25;15:82-102. doi: 10.1016/j.bioactmat.2021.12.005. eCollection 2022 Sep.
5
Silk Fibroin-Based Therapeutics for Impaired Wound Healing.
Pharmaceutics. 2022 Mar 16;14(3):651. doi: 10.3390/pharmaceutics14030651.
6
Structure of Silk I ( Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix.
Molecules. 2021 Jun 17;26(12):3706. doi: 10.3390/molecules26123706.
7
Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration.
Adv Healthc Mater. 2021 Jul;10(14):e2100427. doi: 10.1002/adhm.202100427. Epub 2021 May 26.
8
Nerve Response to Superelastic Shape Memory Polyurethane Aerogels.
Polymers (Basel). 2020 Dec 15;12(12):2995. doi: 10.3390/polym12122995.
9
Recombinant Silk Fibroin Crystalline Regions as Biomaterial Alternatives to the Full-Length Protein.
ACS Biomater Sci Eng. 2020 Dec 14;6(12):7004-7010. doi: 10.1021/acsbiomaterials.0c01103. Epub 2020 Nov 17.
10
Self-Folding 3D Silk Biomaterial Rolls to Facilitate Axon and Bone Regeneration.
Adv Healthc Mater. 2020 Sep;9(18):e2000530. doi: 10.1002/adhm.202000530. Epub 2020 Aug 31.

本文引用的文献

1
Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate.
J Mater Chem B. 2014 Oct 14;2(38):6590-6600. doi: 10.1039/C4TB00878B.
2
Highly tunable elastomeric silk biomaterials.
Adv Funct Mater. 2014 Aug 6;24(29):4615-4624. doi: 10.1002/adfm.201400526.
3
A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers.
Biomaterials. 2014 Oct;35(31):8780-8790. doi: 10.1016/j.biomaterials.2014.06.049. Epub 2014 Jul 23.
4
Reversible hydrogel-solution system of silk with high beta-sheet content.
Biomacromolecules. 2014 Aug 11;15(8):3044-51. doi: 10.1021/bm500662z. Epub 2014 Jul 24.
5
Nanoscale Control of Silks for Nanofibrous Scaffold Formation with Improved Porous Structure.
J Mater Chem B. 2014 May 7;2(17):2622-2633. doi: 10.1039/C4TB00019F.
6
Silk porous scaffolds with nanofibrous microstructures and tunable properties.
Colloids Surf B Biointerfaces. 2014 Aug 1;120:28-37. doi: 10.1016/j.colsurfb.2014.03.027. Epub 2014 May 22.
7
Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds.
Biomaterials. 2014 Aug;35(25):6941-53. doi: 10.1016/j.biomaterials.2014.05.013. Epub 2014 May 29.
9
3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering.
Biomaterials. 2014 Jul;35(20):5316-5326. doi: 10.1016/j.biomaterials.2014.03.035. Epub 2014 Apr 6.
10
A spatial patternable macroporous hydrogel with cell-affinity domains to enhance cell spreading and differentiation.
Biomaterials. 2014 Jun;35(17):4759-68. doi: 10.1016/j.biomaterials.2014.02.041. Epub 2014 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验