Chen Yongchang, Zheng Yinghui, Kang Yu, Yang Weili, Niu Yuyu, Guo Xiangyu, Tu Zhuchi, Si Chenyang, Wang Hong, Xing Ruxiao, Pu Xiuqiong, Yang Shang-Hsun, Li Shihua, Ji Weizhi, Li Xiao-Jiang
Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China, Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming, 650500, China and.
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 10010, China.
Hum Mol Genet. 2015 Jul 1;24(13):3764-74. doi: 10.1093/hmg/ddv120. Epub 2015 Apr 9.
CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy.
CRISPR/Cas9已被用于对包括非人类灵长类动物在内的多种物种的基因组进行基因改造。不幸的是,这项新技术确实会导致嵌合突变,而且我们尚不清楚此类突变是否会在功能上破坏目标基因或引发人类疾病中所见的病理状况。如果我们要用CRISPR/Cas9生成人类疾病的大型动物模型,解决这些问题是必要的。在此,我们使用CRISPR/Cas9靶向猴肌营养不良蛋白基因,以产生导致杜氏肌营养不良症(DMD,一种隐性X连锁型肌营养不良症)的突变。对相对靶向率的检测显示,CRISPR/Cas9靶向可导致猴肌肉中高达87%的肌营养不良蛋白等位基因发生嵌合突变。此外,CRISPR/Cas9在雄性和雌性猴子中均诱导了突变,早期DMD中可见肌营养不良蛋白明显减少和肌肉退化。我们的研究结果表明,无论遗传模式如何,CRISPR/Cas9都能有效地生成人类疾病的猴模型。新生的Cas9靶向猴中存在退化的肌肉细胞,这表明在疾病早期进行治疗干预可能有效地减轻肌病。