Le Brun Anton P, Soliakov Andrei, Shah Deepan S H, Holt Stephen A, McGill Alison, Lakey Jeremy H
Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.
Biomed Microdevices. 2015;17(3):9951. doi: 10.1007/s10544-015-9951-z.
Integrating nanotechnology into useable devices requires a combination of bottom up and top down methodology. Often the techniques to measure and control these different components are entirely different, so methods that can analyse the nanoscale component in situ are of increasing importance. Here we describe a strategy that employs a self-assembling monolayer of engineered protein chimeras to display an array of oriented antibodies (IgG) on a microelectronic device for the label free detection of influenza nucleoprotein. The structural and functional properties of the bio-interface were characterised by a range of physical techniques including surface plasmon resonance, quartz-crystal microbalance and neutron reflectometry. This combination of methods reveals a 13.5 nm thick engineered-monolayer that (i) self-assembles on gold surfaces, (ii) captures IgG with high affinity in a defined orientation and (iii) specifically recognises the influenza A nucleoprotein. Furthermore we also show that this non-covalent self-assembled structure can render the dissociation of bound IgG irreversible by chemical crosslinking in situ without affecting the IgG function. The methods can thus describe in detail the transition from soluble engineered molecules with nanometre dimensions to an array that demonstrates the principles of a working influenza sensor.
将纳米技术集成到可用设备中需要自下而上和自上而下方法的结合。通常,测量和控制这些不同组件的技术完全不同,因此能够原位分析纳米级组件的方法变得越来越重要。在这里,我们描述了一种策略,该策略利用工程化蛋白质嵌合体的自组装单层在微电子设备上展示一系列定向抗体(IgG),用于无标记检测流感核蛋白。通过包括表面等离子体共振、石英晶体微天平以及中子反射测量在内的一系列物理技术对生物界面的结构和功能特性进行了表征。这些方法的结合揭示了一个13.5纳米厚的工程化单层,其(i)在金表面自组装,(ii)以确定的方向高亲和力捕获IgG,并且(iii)特异性识别甲型流感核蛋白。此外,我们还表明,这种非共价自组装结构可以通过原位化学交联使结合的IgG解离不可逆,而不影响IgG的功能。因此,这些方法可以详细描述从具有纳米尺寸的可溶性工程分子到展示工作流感传感器原理的阵列的转变。