Suppr超能文献

正常肌肉结构、生长、发育及再生。

Normal muscle structure, growth, development, and regeneration.

作者信息

de Rezende Pinto Wladimir Bocca Vieira, de Souza Paulo Victor Sgobbi, Oliveira Acary Souza Bulle

机构信息

Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Estado de Israel Street, 899. Vila Clementino, São Paulo, SP, 04022-002, Brazil,

出版信息

Curr Rev Musculoskelet Med. 2015 Jun;8(2):176-81. doi: 10.1007/s12178-015-9267-x.

Abstract

Knowledge about biochemical, structural and physiological aspects, and properties regarding the skeletal muscle has been widely obtained in the last decades. Muscle disorders, mainly represented in neuromuscular clinical practice by acquired and hereditary myopathies, are well-recognized and frequently diagnosed in practice. Most clinical complaints and biochemical characterizations of each myopathy depends on the appropriate knowledge and interpretation of pathological findings and their comparison with normal muscle findings. Great improvement has been obtained in the last decades mainly involving the mechanisms of normal muscle architecture and physiological function in the healthy individuals. Genetic mechanisms have also been widely studied. We provide an extensive literature review involving current knowledge regarding muscle cell structure and function and embryological and regenerative processes linked to muscle lesion. An updated comprehensive description involving the main nuclear genomic regulatory mechanisms of muscle regeneration and embryogenesis is provided in this review.

摘要

在过去几十年中,人们已广泛获取了有关骨骼肌的生化、结构和生理方面以及特性的知识。肌肉疾病在神经肌肉临床实践中主要表现为获得性和遗传性肌病,已得到充分认识且在实践中经常被诊断出来。每种肌病的大多数临床症状和生化特征取决于对病理结果的适当了解和解读,以及将其与正常肌肉结果进行比较。在过去几十年中取得了巨大进展,主要涉及健康个体中正常肌肉结构和生理功能的机制。遗传机制也得到了广泛研究。我们提供了一篇广泛的文献综述,涉及有关肌肉细胞结构和功能以及与肌肉损伤相关的胚胎学和再生过程的当前知识。本综述提供了关于肌肉再生和胚胎发生的主要核基因组调控机制的最新全面描述。

相似文献

1
Normal muscle structure, growth, development, and regeneration.
Curr Rev Musculoskelet Med. 2015 Jun;8(2):176-81. doi: 10.1007/s12178-015-9267-x.
3
Role of TGF-β signaling in inherited and acquired myopathies.
Skelet Muscle. 2011 May 4;1(1):19. doi: 10.1186/2044-5040-1-19.
4
Histochemical and immunohistological approach to comparative neuromuscular diseases.
Folia Histochem Cytobiol. 2009;47(2):143-52. doi: 10.2478/v10042-009-0066-3.
6
Ophthalmological Manifestations of Hereditary Myopathies.
J Binocul Vis Ocul Motil. 2022 Jan-Mar;72(1):4-17. Epub 2022 Jan 20.
7
Proximal myopathy: causes and associated conditions.
Discoveries (Craiova). 2022 Dec 31;10(4):e160. doi: 10.15190/d.2022.19. eCollection 2022 Oct-Dec.
8
Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge.
Autoimmun Rev. 2022 Feb;21(2):102993. doi: 10.1016/j.autrev.2021.102993. Epub 2021 Nov 16.
9
Wnt Signaling in Skeletal Muscle Development and Regeneration.
Prog Mol Biol Transl Sci. 2018 Jan;153:157-179. doi: 10.1016/bs.pmbts.2017.11.026. Epub 2018 Jan 8.
10
Contribution of muscle MRI for diagnosis of myopathy.
Rev Neurol (Paris). 2023 Jan-Feb;179(1-2):61-80. doi: 10.1016/j.neurol.2022.12.002. Epub 2022 Dec 21.

引用本文的文献

1
Identification of key genes affecting ventilator-induced diaphragmatic dysfunction in diabetic mice.
Front Genet. 2024 May 9;15:1387688. doi: 10.3389/fgene.2024.1387688. eCollection 2024.
3
Replace and repair: Biomimetic bioprinting for effective muscle engineering.
APL Bioeng. 2021 Jul 8;5(3):031502. doi: 10.1063/5.0040764. eCollection 2021 Sep.
5
Myotonic Dystrophy and Developmental Regulation of RNA Processing.
Compr Physiol. 2018 Mar 25;8(2):509-553. doi: 10.1002/cphy.c170002.
6
COUP-TFII regulates satellite cell function and muscular dystrophy.
J Clin Invest. 2016 Oct 3;126(10):3929-3941. doi: 10.1172/JCI87414. Epub 2016 Sep 12.
7
Myocardin-related transcription factors are required for skeletal muscle development.
Development. 2016 Aug 1;143(15):2853-61. doi: 10.1242/dev.135855. Epub 2016 Jul 6.

本文引用的文献

1
MiR-206, a key modulator of skeletal muscle development and disease.
Int J Biol Sci. 2015 Feb 5;11(3):345-52. doi: 10.7150/ijbs.10921. eCollection 2015.
2
The 2015 version of the gene table of monogenic neuromuscular disorders (nuclear genome).
Neuromuscul Disord. 2014 Dec;24(12):1123-53. doi: 10.1016/j.nmd.2014.11.001.
3
Stem cell activation in skeletal muscle regeneration.
Cell Mol Life Sci. 2015 May;72(9):1663-77. doi: 10.1007/s00018-014-1819-5. Epub 2015 Jan 9.
4
Muscle satellite cell heterogeneity and self-renewal.
Front Cell Dev Biol. 2014 Jan 30;2:1. doi: 10.3389/fcell.2014.00001. eCollection 2014.
5
Muscle stem cells at a glance.
J Cell Sci. 2014 Nov 1;127(Pt 21):4543-8. doi: 10.1242/jcs.151209. Epub 2014 Oct 9.
6
Regulation of satellite cell function in sarcopenia.
Front Aging Neurosci. 2014 Sep 22;6:246. doi: 10.3389/fnagi.2014.00246. eCollection 2014.
7
Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle.
Front Aging Neurosci. 2014 Sep 18;6:245. doi: 10.3389/fnagi.2014.00245. eCollection 2014.
8
Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?
Arq Neuropsiquiatr. 2014 Sep;72(9):721-34. doi: 10.1590/0004-282x20140110.
9
The role of Six1 in the genesis of muscle cell and skeletal muscle development.
Int J Biol Sci. 2014 Sep 5;10(9):983-9. doi: 10.7150/ijbs.9442. eCollection 2014.
10
Kelch proteins: emerging roles in skeletal muscle development and diseases.
Skelet Muscle. 2014 Jun 1;4:11. doi: 10.1186/2044-5040-4-11. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验