Suppr超能文献

主成分分析(PCA)在多通道肌电信号分类中的比较研究。

Comparative study of PCA in classification of multichannel EMG signals.

作者信息

Geethanjali P

机构信息

School of Electrical Engineering, VIT University, Vellore, 632 014, TN, India,

出版信息

Australas Phys Eng Sci Med. 2015 Jun;38(2):331-43. doi: 10.1007/s13246-015-0343-8. Epub 2015 Apr 10.

Abstract

Electromyographic (EMG) signals are abundantly used in the field of rehabilitation engineering in controlling the prosthetic device and significantly essential to find fast and accurate EMG pattern recognition system, to avoid intrusive delay. The main objective of this paper is to study the influence of Principal component analysis (PCA), a transformation technique, in pattern recognition of six hand movements using four channel surface EMG signals from ten healthy subjects. For this reason, time domain (TD) statistical as well as auto regression (AR) coefficients are extracted from the four channel EMG signals. The extracted statistical features as well as AR coefficients are transformed using PCA to 25, 50 and 75 % of corresponding original feature vector space. The classification accuracy of PCA transformed and non-PCA transformed TD statistical features as well as AR coefficients are studied with simple logistic regression (SLR), decision tree (DT) with J48 algorithm, logistic model tree (LMT), k nearest neighbor (kNN) and neural network (NN) classifiers in the identification of six different movements. The Kruskal-Wallis (KW) statistical test shows that there is a significant reduction (P < 0.05) in classification accuracy with PCA transformed features compared to non-PCA transformed features. SLR with non-PCA transformed time domain (TD) statistical features performs better in accuracy and computational power compared to other features considered in this study. In addition, the motion control of three drives for six movements of the hand is implemented with SLR using TD statistical features in off-line with TMSLF2407 digital signal controller (DSC).

摘要

肌电图(EMG)信号在康复工程领域被广泛用于控制假肢装置,并且对于找到快速准确的肌电图模式识别系统以避免侵入性延迟至关重要。本文的主要目的是研究一种变换技术——主成分分析(PCA)对利用来自10名健康受试者的四通道表面肌电图信号识别六种手部运动模式的影响。为此,从四通道肌电图信号中提取时域(TD)统计量以及自回归(AR)系数。利用PCA将提取的统计特征以及AR系数变换到相应原始特征向量空间的25%、50%和75%。在识别六种不同运动时,使用简单逻辑回归(SLR)、采用J48算法的决策树(DT)、逻辑模型树(LMT)、k近邻(kNN)和神经网络(NN)分类器,研究了经PCA变换和未经PCA变换的TD统计特征以及AR系数的分类准确率。Kruskal-Wallis(KW)统计检验表明,与未经PCA变换的特征相比,经PCA变换的特征在分类准确率上有显著降低(P < 0.05)。与本研究中考虑的其他特征相比,使用未经PCA变换的时域(TD)统计特征的SLR在准确率和计算能力方面表现更好。此外,使用TD统计特征的SLR在离线状态下与TMSLF2407数字信号控制器(DSC)一起实现了手部六种运动的三个驱动器的运动控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验