Suppr超能文献

粗糙脉孢菌生物钟葡萄糖补偿的数学建模与验证

Mathematical modeling and validation of glucose compensation of the neurospora circadian clock.

作者信息

Dovzhenok Andrey A, Baek Mokryun, Lim Sookkyung, Hong Christian I

机构信息

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio.

Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.

出版信息

Biophys J. 2015 Apr 7;108(7):1830-1839. doi: 10.1016/j.bpj.2015.01.043.

Abstract

Autonomous circadian oscillations arise from transcriptional-translational feedback loops of core clock components. The period of a circadian oscillator is relatively insensitive to changes in nutrients (e.g., glucose), which is referred to as "nutrient compensation". Recently, a transcription repressor, CSP-1, was identified as a component of the circadian system in Neurospora crassa. The transcription of csp-1 is under the circadian regulation. Intriguingly, CSP-1 represses the circadian transcription factor, WC-1, forming a negative feedback loop that can influence the core oscillator. This feedback mechanism is suggested to maintain the circadian period in a wide range of glucose concentrations. In this report, we constructed a mathematical model of the Neurospora circadian clock incorporating the above WC-1/CSP-1 feedback loop, and investigated molecular mechanisms of glucose compensation. Our model shows that glucose compensation exists within a narrow range of parameter space where the activation rates of csp-1 and wc-1 are balanced with each other, and simulates loss of glucose compensation in csp-1 mutants. More importantly, we experimentally validated rhythmic oscillations of the wc-1 gene expression and loss of glucose compensation in the wc-1(ov) mutant as predicted in the model. Furthermore, our stochastic simulations demonstrate that the CSP-1-dependent negative feedback loop functions in glucose compensation, but does not enhance the overall robustness of oscillations against molecular noise. Our work highlights predictive modeling of circadian clock machinery and experimental validations employing Neurospora and brings a deeper understanding of molecular mechanisms of glucose compensation.

摘要

自主昼夜节律振荡源自核心生物钟组件的转录-翻译反馈回路。昼夜节律振荡器的周期对营养物质(如葡萄糖)的变化相对不敏感,这被称为“营养补偿”。最近,一种转录抑制因子CSP-1被鉴定为粗糙脉孢菌昼夜节律系统的一个组件。csp-1的转录受昼夜节律调控。有趣的是,CSP-1抑制昼夜节律转录因子WC-1,形成一个可影响核心振荡器的负反馈回路。这种反馈机制被认为能在广泛的葡萄糖浓度范围内维持昼夜节律周期。在本报告中,我们构建了一个包含上述WC-1/CSP-1反馈回路的粗糙脉孢菌昼夜节律钟数学模型,并研究了葡萄糖补偿的分子机制。我们的模型表明,葡萄糖补偿存在于一个狭窄的参数空间范围内,其中csp-1和wc-1的激活率相互平衡,并模拟了csp-1突变体中葡萄糖补偿的丧失。更重要的是,我们通过实验验证了wc-1基因表达的节律振荡以及模型预测的wc-1(ov)突变体中葡萄糖补偿的丧失。此外,我们的随机模拟表明,依赖CSP-1的负反馈回路在葡萄糖补偿中起作用,但不会增强振荡对分子噪声的整体稳健性。我们的工作突出了昼夜节律钟机制的预测建模以及利用粗糙脉孢菌进行的实验验证,并加深了对葡萄糖补偿分子机制的理解。

相似文献

1
Mathematical modeling and validation of glucose compensation of the neurospora circadian clock.
Biophys J. 2015 Apr 7;108(7):1830-1839. doi: 10.1016/j.bpj.2015.01.043.
2
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa.
Genetics. 2016 Sep;204(1):163-76. doi: 10.1534/genetics.116.191064. Epub 2016 Jul 22.
3
A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa.
PLoS Genet. 2018 Jan 19;14(1):e1007192. doi: 10.1371/journal.pgen.1007192. eCollection 2018 Jan.
5
Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in .
mBio. 2021 Jun 29;12(3):e0149321. doi: 10.1128/mBio.01493-21.
6
Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7408-13. doi: 10.1073/pnas.121170298.
8
Antisense Transcription of the Frequency Gene Is Rhythmically Regulated by CSP-1 Repressor but Dispensable for Clock Function.
J Biol Rhythms. 2023 Jun;38(3):259-268. doi: 10.1177/07487304231153914. Epub 2023 Mar 1.
9
Simulating dark expressions and interactions of frq and wc-1 in the Neurospora circadian clock.
Biophys J. 2008 Feb 15;94(4):1221-32. doi: 10.1529/biophysj.107.115154. Epub 2007 Oct 26.
10
Modeling circadian oscillations with interlocking positive and negative feedback loops.
J Neurosci. 2001 Sep 1;21(17):6644-56. doi: 10.1523/JNEUROSCI.21-17-06644.2001.

引用本文的文献

1
A Compensated Clock: Temperature and Nutritional Compensation Mechanisms Across Circadian Systems.
Bioessays. 2025 Mar;47(3):e202400211. doi: 10.1002/bies.202400211. Epub 2024 Dec 18.
2
Transcriptional rewiring of an evolutionarily conserved circadian clock.
EMBO J. 2024 May;43(10):2015-2034. doi: 10.1038/s44318-024-00088-3. Epub 2024 Apr 16.
3
Syncytial Assembly Lines: Consequences of Multinucleate Cellular Compartments for Fungal Protein Synthesis.
Results Probl Cell Differ. 2024;71:159-183. doi: 10.1007/978-3-031-37936-9_9.
4
Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability.
PLoS Biol. 2023 Jan 5;21(1):e3001961. doi: 10.1371/journal.pbio.3001961. eCollection 2023 Jan.
5
Data-driven modelling captures dynamics of the circadian clock of Neurospora crassa.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010331. doi: 10.1371/journal.pcbi.1010331. eCollection 2022 Aug.
6
Restoring circadian gene profiles in clock networks using synthetic feedback control.
NPJ Syst Biol Appl. 2022 Feb 15;8(1):7. doi: 10.1038/s41540-022-00216-x.
7
Principles underlying the complex dynamics of temperature entrainment by a circadian clock.
iScience. 2021 Oct 30;24(11):103370. doi: 10.1016/j.isci.2021.103370. eCollection 2021 Nov 19.
8
Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities.
PLoS Comput Biol. 2021 Oct 18;17(10):e1008952. doi: 10.1371/journal.pcbi.1008952. eCollection 2021 Oct.
9
Mechanism for the Generation of Robust Circadian Oscillations through Ultransensitivity and Differential Binding Affinity.
J Phys Chem B. 2021 Oct 14;125(40):11179-11187. doi: 10.1021/acs.jpcb.1c05915. Epub 2021 Oct 5.
10
Circadian rhythm shows potential for mRNA efficiency and self-organized division of labor in multinucleate cells.
PLoS Comput Biol. 2021 Aug 2;17(8):e1008828. doi: 10.1371/journal.pcbi.1008828. eCollection 2021 Aug.

本文引用的文献

1
The validity of quasi-steady-state approximations in discrete stochastic simulations.
Biophys J. 2014 Aug 5;107(3):783-793. doi: 10.1016/j.bpj.2014.06.012.
2
Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.
Biophys J. 2014 May 6;106(9):2071-81. doi: 10.1016/j.bpj.2014.02.039.
3
Circadian rhythms synchronize mitosis in Neurospora crassa.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1397-402. doi: 10.1073/pnas.1319399111. Epub 2014 Jan 13.
4
Deterministic versus stochastic models for circadian rhythms.
J Biol Phys. 2002 Dec;28(4):637-53. doi: 10.1023/A:1021286607354.
5
A mechanism for robust circadian timekeeping via stoichiometric balance.
Mol Syst Biol. 2012;8:630. doi: 10.1038/msb.2012.62.
7
On the precision of quasi steady state assumptions in stochastic dynamics.
J Chem Phys. 2012 Jul 28;137(4):044105. doi: 10.1063/1.4731754.
9
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function.
Genes Dev. 2012 Apr 1;26(7):657-67. doi: 10.1101/gad.186858.112.
10
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β.
Nature. 2012 Mar 29;485(7396):123-7. doi: 10.1038/nature11048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验