Suppr超能文献

调节哺乳动物生物钟耦合周期的分子机制。

Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.

作者信息

Kim Jae Kyoung, Kilpatrick Zachary P, Bennett Matthew R, Josić Krešimir

机构信息

Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio.

Department of Mathematics, University of Houston, Houston, Texas.

出版信息

Biophys J. 2014 May 6;106(9):2071-81. doi: 10.1016/j.bpj.2014.02.039.

Abstract

In mammals, most cells in the brain and peripheral tissues generate circadian (∼24 h) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, the individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period is close to the population mean of cells' intrinsic periods. In this way, the synchronized period of the SCN stays close to the periods of cells in peripheral tissues. This is important because the SCN must entrain cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not known. We use mathematical modeling and analysis to show that the mechanism of transcription repression in the intracellular feedback loop plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein sequestration. In contrast, the coupled period is far from the mean if repression occurs through highly nonlinear Hill-type regulation (e.g., oligomer- or phosphorylation-based repression), as widely assumed in previous mathematical models. Furthermore, we find that the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period. These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular organisms, mammals, and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms and syncytia. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the population mean (∼24 h).

摘要

在哺乳动物中,大脑和外周组织中的大多数细胞自主产生昼夜节律(约24小时)。这些自我维持的节律由视交叉上核(SCN)中的主生物钟进行协调和校准。在SCN内,每个神经元的个体节律通过细胞间信号传导实现同步。SCN的一个重要特征是,同步周期接近细胞固有周期的群体平均值。通过这种方式,SCN的同步周期与外周组织中的细胞周期保持接近。这很重要,因为SCN必须校准全身的细胞。然而,驱动耦合的SCN细胞周期达到群体平均值的机制尚不清楚。我们使用数学建模和分析表明,细胞内反馈回路中的转录抑制机制在调节耦合周期中起着关键作用。具体而言,我们使用相位响应曲线分析表明,如果转录抑制通过蛋白质隔离发生,SCN内的耦合周期会保持在群体平均值附近。相比之下,如果抑制通过高度非线性的希尔型调节(例如基于寡聚体或磷酸化的抑制)发生,耦合周期则远离平均值,这是先前数学模型中广泛假设的情况。此外,我们发现与细胞内反馈相比,细胞间耦合的时间尺度需要很快,以维持平均周期。这些发现揭示了细胞内转录反馈回路与细胞间耦合之间的重要关系。这种关系解释了为什么在多细胞生物、哺乳动物和果蝇中,转录抑制似乎通过蛋白质隔离发生,这与单细胞生物和合体中的基于磷酸化的抑制形成对比。也就是说,向蛋白质隔离的转变对于使多个细胞以接近群体平均值(约24小时)的周期同步至关重要。

相似文献

1
Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.
Biophys J. 2014 May 6;106(9):2071-81. doi: 10.1016/j.bpj.2014.02.039.
2
[Clock genes and clock-controlled genes in mammals].
Nihon Rinsho. 2012 Jul;70(7):1109-14.
4
Global parameter search reveals design principles of the mammalian circadian clock.
BMC Syst Biol. 2008 Feb 29;2:22. doi: 10.1186/1752-0509-2-22.
5
Protein sequestration versus Hill-type repression in circadian clock models.
IET Syst Biol. 2016 Aug;10(4):125-35. doi: 10.1049/iet-syb.2015.0090.
6
Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3657-62. doi: 10.1073/pnas.1511351113. Epub 2016 Mar 10.
7
Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock.
J Mol Biol. 2020 May 29;432(12):3639-3660. doi: 10.1016/j.jmb.2020.01.019. Epub 2020 Jan 26.
8
Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling.
J Biol Rhythms. 2020 Jun;35(3):287-301. doi: 10.1177/0748730420913672. Epub 2020 Apr 14.
9
Entrainment of circadian clocks in mammals by arousal and food.
Essays Biochem. 2011 Jun 30;49(1):119-36. doi: 10.1042/bse0490119.
10
The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm.
J Physiol Sci. 2018 May;68(3):207-219. doi: 10.1007/s12576-018-0597-5. Epub 2018 Feb 19.

引用本文的文献

1
Modeling the geometry of circadian synchronization and period across aging.
Biogerontology. 2025 Aug 9;26(4):157. doi: 10.1007/s10522-025-10303-1.
3
Spatially coordinated collective phosphorylation filters spatiotemporal noises for precise circadian timekeeping.
iScience. 2023 Apr 1;26(4):106554. doi: 10.1016/j.isci.2023.106554. eCollection 2023 Apr 21.
4
Cycle dynamics and synchronization in a coupled network of peripheral circadian clocks.
Interface Focus. 2022 Apr 15;12(3):20210087. doi: 10.1098/rsfs.2021.0087. eCollection 2022 Jun 6.
5
Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations.
Interface Focus. 2022 Apr 15;12(3):20210084. doi: 10.1098/rsfs.2021.0084. eCollection 2022 Jun 6.
6
Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock.
PLoS Comput Biol. 2022 Mar 18;18(3):e1008340. doi: 10.1371/journal.pcbi.1008340. eCollection 2022 Mar.
7
Cut the noise or couple up: Coordinating circadian and synthetic clocks.
iScience. 2021 Aug 27;24(9):103051. doi: 10.1016/j.isci.2021.103051. eCollection 2021 Sep 24.
8
Circadian rhythm shows potential for mRNA efficiency and self-organized division of labor in multinucleate cells.
PLoS Comput Biol. 2021 Aug 2;17(8):e1008828. doi: 10.1371/journal.pcbi.1008828. eCollection 2021 Aug.
9
A stochastic oscillator model simulates the entrainment of vertebrate cellular clocks by light.
Sci Rep. 2021 Jul 14;11(1):14497. doi: 10.1038/s41598-021-93913-2.
10
Collective Oscillations in Coupled-Cell Systems.
Bull Math Biol. 2021 Apr 23;83(6):62. doi: 10.1007/s11538-021-00883-7.

本文引用的文献

1
Engineered temperature compensation in a synthetic genetic clock.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):972-7. doi: 10.1073/pnas.1316298111. Epub 2014 Jan 6.
2
Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons.
Neuron. 2013 Nov 20;80(4):973-83. doi: 10.1016/j.neuron.2013.08.022.
3
The Goodwin model: behind the Hill function.
PLoS One. 2013 Aug 1;8(8):e69573. doi: 10.1371/journal.pone.0069573. Print 2013.
4
Modeling and validating chronic pharmacological manipulation of circadian rhythms.
CPT Pharmacometrics Syst Pharmacol. 2013 Jul 17;2(7):e57. doi: 10.1038/psp.2013.34.
5
A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus.
Neuron. 2013 May 22;78(4):714-28. doi: 10.1016/j.neuron.2013.03.011. Epub 2013 Apr 25.
7
A mechanism for robust circadian timekeeping via stoichiometric balance.
Mol Syst Biol. 2012;8:630. doi: 10.1038/msb.2012.62.
8
A design principle for a posttranslational biochemical oscillator.
Cell Rep. 2012 Oct 25;2(4):938-50. doi: 10.1016/j.celrep.2012.09.006. Epub 2012 Oct 19.
9
Suprachiasmatic nucleus: cellular clocks and networks.
Prog Brain Res. 2012;199:129-141. doi: 10.1016/B978-0-444-59427-3.00029-0.
10
Systems biology of cellular rhythms.
FEBS Lett. 2012 Aug 31;586(18):2955-65. doi: 10.1016/j.febslet.2012.07.041. Epub 2012 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验