Heidelberg University Biochemistry Center, Heidelberg, Germany.
Theoretical Systems Biology [B086] Deutsches Krebsforschungszentrum, Heidelberg, Germany.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010331. doi: 10.1371/journal.pcbi.1010331. eCollection 2022 Aug.
Eukaryotic circadian clocks are based on self-sustaining, cell-autonomous oscillatory feedback loops that can synchronize with the environment via recurrent stimuli (zeitgebers) such as light. The components of biological clocks and their network interactions are becoming increasingly known, calling for a quantitative understanding of their role for clock function. However, the development of data-driven mathematical clock models has remained limited by the lack of sufficiently accurate data. Here we present a comprehensive model of the circadian clock of Neurospora crassa that describe free-running oscillations in constant darkness and entrainment in light-dark cycles. To parameterize the model, we measured high-resolution time courses of luciferase reporters of morning and evening specific clock genes in WT and a mutant strain. Fitting the model to such comprehensive data allowed estimating parameters governing circadian phase, period length and amplitude, and the response of genes to light cues. Our model suggests that functional maturation of the core clock protein Frequency causes a delay in negative feedback that is critical for generating circadian rhythms.
真核生物钟基于自我维持的、细胞自主的振荡反馈回路,可通过反复的刺激(如光)与环境同步。生物钟的组成部分及其网络相互作用越来越为人所知,这就要求定量了解它们在时钟功能中的作用。然而,由于缺乏足够精确的数据,数据驱动的数学时钟模型的发展仍然受到限制。在这里,我们提出了一个粗糙脉孢菌生物钟的综合模型,该模型描述了在持续黑暗中的自由运行振荡和在光-暗循环中的驯化。为了参数化该模型,我们测量了 WT 和突变株中早晨和晚上特定生物钟基因的荧光素酶报告基因的高分辨率时程。将模型拟合到这样的综合数据中,可以估计控制生物钟相位、周期长度和幅度以及基因对光信号响应的参数。我们的模型表明,核心时钟蛋白频率的功能成熟导致负反馈延迟,这对产生生物钟节律至关重要。