†Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy.
‡Instituto de Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain.
ACS Nano. 2015 May 26;9(5):5051-62. doi: 10.1021/acsnano.5b00136. Epub 2015 Apr 20.
Antibody-antigen (Ab-Ag) recognition is the primary event at the basis of many biosensing platforms. In label-free biosensors, these events occurring at solid-liquid interfaces are complex and often difficult to control technologically across the smallest length scales down to the molecular scale. Here a molecular-scale technique, such as single-molecule force spectroscopy, is performed across areas of a real electrode functionalized for the immunodetection of an inflammatory cytokine, viz. interleukin-4 (IL4). The statistical analysis of force-distance curves allows us to quantify the probability, the characteristic length scales, the adhesion energy, and the time scales of specific recognition. These results enable us to rationalize the response of an electrolyte-gated organic field-effect transistor (EGOFET) operated as an IL4 immunosensor. Two different strategies for the immobilization of IL4 antibodies on the Au gate electrode have been compared: antibodies are bound to (i) a smooth film of His-tagged protein G (PG)/Au; (ii) a 6-aminohexanethiol (HSC6NH2) self-assembled monolayer on Au through glutaraldehyde. The most sensitive EGOFET (concentration minimum detection level down to 5 nM of IL4) is obtained with the first functionalization strategy. This result is correlated to the highest probability (30%) of specific binding events detected by force spectroscopy on Ab/PG/Au electrodes, compared to 10% probability on electrodes with the second functionalization. Specifically, this demonstrates that Ab/PG/Au yields the largest areal density of oriented antibodies available for recognition. More in general, this work shows that specific recognition events in multiscale biosensors can be assessed, quantified, and optimized by means of a nanoscale technique.
抗体-抗原(Ab-Ag)识别是许多生物传感平台的基础上的主要事件。在无标记生物传感器中,这些在固-液界面发生的事件是复杂的,并且通常难以在最小长度尺度(小至分子尺度)上进行技术控制。这里执行了一种分子尺度技术,例如单分子力谱学,跨越了真实电极的区域,该电极针对炎症细胞因子白细胞介素-4(IL4)的免疫检测进行了功能化。力-距离曲线的统计分析使我们能够定量特定识别的概率、特征长度尺度、粘附能和时间尺度。这些结果使我们能够合理化作为 IL4 免疫传感器操作的电解质门控有机场效应晶体管(EGOFET)的响应。已经比较了两种将 IL4 抗体固定在 Au 栅电极上的不同策略:抗体结合到(i)His 标记的蛋白 G(PG)/Au 的光滑膜上;(ii)通过戊二醛固定在 Au 上的 6-氨基己硫醇(HSC6NH2)自组装单层。具有第一种功能化策略的 EGOFET (IL4 的浓度最低检测水平低至 5 nM)是最敏感的。这一结果与通过力谱学在 Ab/PG/Au 电极上检测到的特异性结合事件的最高概率(30%)相关,而在具有第二种功能化的电极上的概率为 10%。具体而言,这表明 Ab/PG/Au 产生了可用于识别的定向抗体的最大面积密度。更一般地说,这项工作表明,可以通过纳米尺度技术评估、量化和优化多尺度生物传感器中的特定识别事件。