Voss Andreas, Voss Jochen, Lerche Veronika
Psychologisches Institut, Ruprecht-Karls-Universität Heidelberg Heidelberg, Germany.
School of Mathematics, University of Leeds Leeds, UK.
Front Psychol. 2015 Mar 27;6:336. doi: 10.3389/fpsyg.2015.00336. eCollection 2015.
Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets.
扩散模型可用于推断快速二元决策任务中涉及的认知过程。该模型假设信息持续积累,直到达到两个阈值之一。在分析中,决策任务多次试验的反应时间分布用于估计一组映射不同认知过程的参数。近年来,扩散模型分析在心理学的不同领域越来越受欢迎。这种日益普及是基于参数估计的几种软件解决方案的最新发展。尽管这些程序使模型的应用相对容易,但对于最先进的扩散模型研究的不同步骤缺乏了解。在本文中,我们提供了一个关于扩散建模的简明教程,并展示了fast-dm-30,这是用于扩散模型数据分析的fast-dm软件(Voss和Voss,2007)的全面修订和扩展版本。fast-dm版本最重要的改进是可以在不同的优化标准(即最大似然、卡方和柯尔莫哥洛夫-斯米尔诺夫)之间进行选择,这些标准在不同数据集的适用性方面存在差异。