Department of Cognitive, Linguistic and Psychological Sciences, Brown University Providence, RI, USA.
Front Neuroinform. 2013 Aug 2;7:14. doi: 10.3389/fninf.2013.00014. eCollection 2013.
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
扩散模型是一种常用于推断决策背后潜在心理过程并将其与基于反应时间的神经机制联系起来的工具。虽然已经提供了高效的开源软件来定量拟合模型数据,但当前的估计方法需要大量的反应时间测量值来恢复有意义的参数,并且只能提供每个参数的点估计值。相比之下,分层贝叶斯参数估计方法对于提高统计功效很有用,允许同时估计个体被试的参数和他们所来自的群体分布,同时还在后验分布中提供这些参数的不确定性度量。在这里,我们提出了一个新的基于 Python 的工具包,称为 HDDM(分层漂移扩散模型),它允许快速灵活地估计漂移扩散模型和相关的线性弹道累加器模型。HDDM 比非分层方法需要更少的每个被试/条件的数据,允许进行完整的贝叶斯数据分析,并可以处理数据中的异常值。最后,HDDM 支持估计逐试测量(例如 fMRI)如何影响决策参数。本文将首先描述漂移扩散模型和贝叶斯推断的理论背景。然后,我们将在我们实验室的真实数据集上展示工具包的用法。最后,参数恢复研究表明,HDDM 优于替代拟合方法,如 χ(2)-分位数方法和最大似然估计。软件和文档可在以下网址下载:http://ski.clps.brown.edu/hddm_docs/