Suppr超能文献

用于描述中国东南部福建省杉木单株树冠宽度的线性混合效应模型。

Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

作者信息

Hao Xu, Yujun Sun, Xinjie Wang, Jin Wang, Yao Fu

机构信息

Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, PR China.

出版信息

PLoS One. 2015 Apr 15;10(4):e0122257. doi: 10.1371/journal.pone.0122257. eCollection 2015.

Abstract

A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

摘要

针对中国东南部福建省杉木(Cunninghamia lanceolata (Lamb.) Hook)单株树冠宽度建立了多元线性模型。数据取自55个纯杉木人工林样地。采用普通线性最小二乘法(OLS)回归建立树冠宽度模型。为了调整来自同一样地观测值之间的相关性,我们基于多元线性模型开发了一级线性混合效应(LME)模型,该模型考虑了样地的随机效应。LME模型的最佳随机效应组合通过赤池信息准则、贝叶斯信息准则和-2对数似然法确定。通过三种残差方差函数(幂函数、指数函数和常数加幂函数)降低异方差性。通过三种相关结构对空间相关性进行建模:一阶自回归结构[AR(1)]、一阶自回归和移动平均结构的组合[ARMA(1,1)]以及复合对称结构(CS)。然后,使用绝对平均残差(AMR)、均方根误差(RMSE)和调整决定系数(adj-R2)将LME模型与多元线性模型进行比较。对于单株树冠宽度模型,一级LME模型表现最佳。使用独立数据集测试模型性能并证明校准LME模型的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c26a/4398382/8da9ad3da7fa/pone.0122257.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验