Suppr超能文献

利用遥感和 GIS 技术监测和预测土地利用和土地覆盖变化——以中国 Jiangle 丘陵地区为例。

Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques-A case study of a hilly area, Jiangle, China.

机构信息

State Forestry Administration Key Laboratory of Forest Resources & Environmental Management, Beijing Forestry University, Beijing, China.

出版信息

PLoS One. 2018 Jul 13;13(7):e0200493. doi: 10.1371/journal.pone.0200493. eCollection 2018.

Abstract

Land use and land cover change research has been applied to landslides, erosion, land planning and global change. Based on the CA-Markov model, this study predicts the spatial patterns of land use in 2025 and 2036 based on the dynamic changes in land use patterns using remote sensing and geographic information system. CA-Markov integrates the advantages of cellular automata and Markov chain analysis to predict future land use trends based on studies of land use changes in the past. Based on Landsat 5 TM images from 1992 and 2003 and Landsat 8 OLI images from 2014, this study obtained a land use classification map for each year. Then, the genetic transition probability from 1992 to 2003 was obtained by IDRISI software. Based on the CA-Markov model, a predicted land use map for 2014 was obtained, and it was validated by the actual land use results of 2014 with a Kappa index of 0.8128. Finally, the land use patterns of 2025 and 2036 in Jiangle County were determined. This study can provide suggestions and a basis for urban development planning in Jiangle County.

摘要

土地利用/土地覆被变化研究已应用于滑坡、侵蚀、土地规划和全球变化等领域。本研究基于 CA-Markov 模型,利用遥感和地理信息系统,根据土地利用格局的动态变化,预测 2025 年和 2036 年的土地利用空间格局。CA-Markov 模型结合了元胞自动机和马尔可夫链分析的优势,根据过去土地利用变化的研究,预测未来土地利用趋势。本研究利用 1992 年和 2003 年的 Landsat 5 TM 图像以及 2014 年的 Landsat 8 OLI 图像,获得了每年的土地利用分类图。然后,通过 IDRISI 软件获得了 1992 年至 2003 年的遗传转移概率。基于 CA-Markov 模型,获得了 2014 年的预测土地利用图,并通过 2014 年实际土地利用结果进行验证,Kappa 指数为 0.8128。最后,确定了 2025 年和 2036 年将乐县的土地利用格局。本研究可为将乐县城市发展规划提供建议和依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aace/6044539/6d45b828b300/pone.0200493.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验