Yoshii Taishi, Hermann-Luibl Christiane, Kistenpfennig Christa, Schmid Benjamin, Tomioka Kenji, Helfrich-Förster Charlotte
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg D-97074, Germany, and.
J Neurosci. 2015 Apr 15;35(15):6131-41. doi: 10.1523/JNEUROSCI.0070-15.2015.
Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.
与环境光/暗(LD)周期同步是生物钟的核心功能。在果蝇中,同步是通过隐花色素(CRY)和视觉系统的输入来实现的。在短暂光脉冲激活期间,CRY触发无时间蛋白(TIMELESS)的降解以及随后的昼夜节律相位变化。这对LD同步来说不太重要,从而引发了关于视觉系统的光输入电路和机制的问题。最近的研究表明,大脑起搏器生物钟神经元的不同子集,即早晨(M)和傍晚(E)振荡器,在光同步中具有不同的功能。然而,CRY在M和E振荡器中对LD周期同步的作用尚不清楚。在这里,我们通过在cry基因缺失(cry(0))突变体背景下在不同的生物钟神经元子集中选择性表达CRY来解决这个问题。我们能够通过在E振荡器而非任何其他生物钟神经元中表达CRY来挽救cry(0)突变体的光同步缺陷。cry(0)突变体的E细胞而非M细胞中的同源结构域蛋白1分子振荡仍对LD相位延迟有反应。这种残余的光反应源于视觉系统,因为当所有外部光感受器通过基因手段被切除时它就消失了。我们得出结论,E振荡器是通过CRY和视觉系统进行光输入的靶点,并且是正常光同步所必需的。