Suppr超能文献

果蝇睡眠与活动的昼夜节律调节及光周期调整背后的神经网络

A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.

作者信息

Schlichting Matthias, Menegazzi Pamela, Lelito Katharine R, Yao Zepeng, Buhl Edgar, Dalla Benetta Elena, Bahle Andrew, Denike Jennifer, Hodge James John, Helfrich-Förster Charlotte, Shafer Orie Thomas

机构信息

Neurobiology and Genetics, Biocenter, University of Wuerzburg, 97074 Würzburg, Germany.

Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, and.

出版信息

J Neurosci. 2016 Aug 31;36(35):9084-96. doi: 10.1523/JNEUROSCI.0992-16.2016.

Abstract

UNLABELLED

A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms.

SIGNIFICANCE STATEMENT

In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network.

摘要

未标注

生物钟对光/暗循环的敏感性确保生物节律与外部昼夜保持最佳相位关系。在动物中,驱动睡眠/活动节律的生物钟神经元网络(CCNN)接收来自多个光感受器的光输入,但这些光感受器如何调节CCNN组件尚不清楚。在这里,我们表明霍夫鲍尔-布赫纳小眼对果蝇CCNN内的两类腹侧外侧神经元(LNvs)有不同的调节作用。小眼在大型LNvs中拮抗基于隐花色素(CRY)和复眼的光感受,而在小型LNvs中协同CRY介导的光感受。此外,我们表明大型LNvs与“夜间细胞”的子集相互作用,以日长依赖的方式调整夜间活动高峰的时间。我们的工作确定了大型LNvs与一组夜间细胞之间的肽能连接,这对昼夜节律的季节性调节至关重要。

意义声明

在动物中,生物钟已经进化以协调行为和新陈代谢的时间。一致的时间需要这些生物钟与太阳日同步,这一过程对生物体的健康至关重要。光循环是使生物钟同步的最重要外部线索,并且生物钟系统使用多个光感受器将计时与光/暗循环联系起来。来自这些光感受器的光信息如何整合到生物钟神经元网络以支持同步尚不清楚。我们的结果表明,来自HB小眼的输入对神经元亚群的生理有不同影响。这条输入途径与来自复眼的输入一起,精确地调节了果蝇在漫长夏日下的活动时间。我们的结果提供了一个光转导和整合到生物钟系统中的机制模型,在生物钟神经元网络中识别出新的和意想不到的网络模式。

相似文献

1
2
Neural Network Interactions Modulate CRY-Dependent Photoresponses in .
J Neurosci. 2018 Jul 4;38(27):6161-6171. doi: 10.1523/JNEUROSCI.2259-17.2018. Epub 2018 Jun 6.
3
Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
J Neurosci. 2015 Apr 15;35(15):6131-41. doi: 10.1523/JNEUROSCI.0070-15.2015.
4
Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
J Biol Rhythms. 2001 Jun;16(3):205-15. doi: 10.1177/074873040101600303.
5
Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
J Comp Neurol. 2016 Oct 1;524(14):2828-44. doi: 10.1002/cne.23994. Epub 2016 Mar 28.
9
Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
J Neurosci. 2004 Feb 11;24(6):1468-77. doi: 10.1523/JNEUROSCI.3661-03.2004.

引用本文的文献

2
Neuronal synchronization in .
iScience. 2025 Jun 19;28(7):112942. doi: 10.1016/j.isci.2025.112942. eCollection 2025 Jul 18.
4
Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons.
Eur J Neurosci. 2025 Mar;61(5):e70037. doi: 10.1111/ejn.70037.
5
Differential regulation of sleep by blue, green, and red light in .
Front Behav Neurosci. 2024 Oct 30;18:1476501. doi: 10.3389/fnbeh.2024.1476501. eCollection 2024.
6
The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects.
J Biol Rhythms. 2025 Apr;40(2):120-142. doi: 10.1177/07487304241290861. Epub 2024 Nov 11.
7
A one-day journey to the suburbs: circadian clock in the Drosophila visual system.
FEBS J. 2025 Feb;292(4):727-739. doi: 10.1111/febs.17317. Epub 2024 Nov 1.
8
Circadian plasticity evolves through regulatory changes in a neuropeptide gene.
Nature. 2024 Nov;635(8040):951-959. doi: 10.1038/s41586-024-08056-x. Epub 2024 Oct 16.
9
Neuropeptide-dependent spike time precision and plasticity in circadian output neurons.
bioRxiv. 2024 Dec 21:2024.10.06.616871. doi: 10.1101/2024.10.06.616871.
10
Regulation of long-term memory by a few clock neurons in .
Biophys Physicobiol. 2024 Jan 24;21(Supplemental):e211002. doi: 10.2142/biophysico.bppb-v21.s002. eCollection 2024.

本文引用的文献

1
Circadian neuron feedback controls the Drosophila sleep--activity profile.
Nature. 2016 Aug 18;536(7616):292-7. doi: 10.1038/nature19097. Epub 2016 Aug 1.
2
The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila.
J Biol Rhythms. 2016 Oct;31(5):428-42. doi: 10.1177/0748730416651363. Epub 2016 Jun 5.
3
Synchronous Drosophila circadian pacemakers display nonsynchronous Ca²⁺ rhythms in vivo.
Science. 2016 Feb 26;351(6276):976-81. doi: 10.1126/science.aad3997.
4
Acetylcholine from Visual Circuits Modulates the Activity of Arousal Neurons in Drosophila.
J Neurosci. 2015 Dec 16;35(50):16315-27. doi: 10.1523/JNEUROSCI.1571-15.2015.
5
Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature.
Nature. 2015 Nov 26;527(7579):516-20. doi: 10.1038/nature16148. Epub 2015 Nov 18.
6
Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy.
Cell. 2015 Aug 13;162(4):823-35. doi: 10.1016/j.cell.2015.07.010. Epub 2015 Jul 30.
7
Photic entrainment in Drosophila assessed by locomotor activity recordings.
Methods Enzymol. 2015;552:105-23. doi: 10.1016/bs.mie.2014.10.017. Epub 2014 Dec 26.
8
The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster.
J Neurosci. 2014 Jul 16;34(29):9522-36. doi: 10.1523/JNEUROSCI.0111-14.2014.
9
PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.
Elife. 2014 Jun 17;3:e02780. doi: 10.7554/eLife.02780.
10
PDF and cAMP enhance PER stability in Drosophila clock neurons.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1284-90. doi: 10.1073/pnas.1402562111. Epub 2014 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验