Suppr超能文献

具有稀疏融合载荷的主成分分析

Principal Component Analysis With Sparse Fused Loadings.

作者信息

Guo Jian, James Gareth, Levina Elizaveta, Michailidis George, Zhu Ji

机构信息

Department of Statistics, University of Michigan, 269 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109-1107.

Marshall School of Business, University of Southern California, Los Angeles, CA 90089-0809.

出版信息

J Comput Graph Stat. 2010;19(4):930-946. doi: 10.1198/jcgs.2010.08127.

Abstract

In this article, we propose a new method for principal component analysis (PCA), whose main objective is to capture natural "blocking" structures in the variables. Further, the method, beyond selecting different variables for different components, also encourages the loadings of highly correlated variables to have the same magnitude. These two features often help in interpreting the principal components. To achieve these goals, a fusion penalty is introduced and the resulting optimization problem solved by an alternating block optimization algorithm. The method is applied to a number of simulated and real datasets and it is shown that it achieves the stated objectives. The supplemental materials for this article are available online.

摘要

在本文中,我们提出了一种主成分分析(PCA)的新方法,其主要目标是捕捉变量中的自然“分组”结构。此外,该方法除了为不同成分选择不同变量外,还促使高度相关变量的载荷具有相同的大小。这两个特征通常有助于解释主成分。为实现这些目标,引入了融合惩罚项,并通过交替块优化算法解决由此产生的优化问题。该方法应用于多个模拟和真实数据集,结果表明它实现了既定目标。本文的补充材料可在线获取。

相似文献

1
Principal Component Analysis With Sparse Fused Loadings.具有稀疏融合载荷的主成分分析
J Comput Graph Stat. 2010;19(4):930-946. doi: 10.1198/jcgs.2010.08127.
2
Sparse Exponential Family Principal Component Analysis.稀疏指数族主成分分析
Pattern Recognit. 2016 Dec;60:681-691. doi: 10.1016/j.patcog.2016.05.024. Epub 2016 May 21.
3
Sparse Principal Component Analysis via Rotation and Truncation.基于旋转和截断的稀疏主成分分析。
IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):875-90. doi: 10.1109/TNNLS.2015.2427451. Epub 2015 Dec 22.
5
Stochastic convex sparse principal component analysis.随机凸稀疏主成分分析
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.
7
Sparse Principal Component Analysis With Preserved Sparsity Pattern.具有保留稀疏模式的稀疏主成分分析
IEEE Trans Image Process. 2019 Jul;28(7):3274-3285. doi: 10.1109/TIP.2019.2895464. Epub 2019 Jan 25.
10
Learning Feature-Sparse Principal Subspace.学习特征稀疏主性子空间
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4858-4869. doi: 10.1109/TPAMI.2022.3212646. Epub 2023 Mar 7.

引用本文的文献

4
SOFAR: Large-Scale Association Network Learning.声呐:大规模关联网络学习。
IEEE Trans Inf Theory. 2019 Aug;65(8):4924-4939. doi: 10.1109/tit.2019.2909889. Epub 2019 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验