Suppr超能文献

光谱基因集富集(SGSE)。

Spectral gene set enrichment (SGSE).

作者信息

Frost H Robert, Li Zhigang, Moore Jason H

机构信息

Institute of Quantitative Biomedical Sciences, Geisel School of Medicine, Lebanon, NH, 03756, USA.

Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Geisel School of Medicine, Lebanon, NH, 03756, USA.

出版信息

BMC Bioinformatics. 2015 Mar 3;16:70. doi: 10.1186/s12859-015-0490-7.

Abstract

BACKGROUND

Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters.

RESULTS

We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data.

CONCLUSIONS

Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.

摘要

背景

基因集测试通常在监督环境中进行,以量化基因组与临床表型之间的关联。然而,在许多情况下,在没有表型变量的情况下,需要基于基因集对基因组数据进行解释。虽然存在无监督基因集测试的方法,但它们主要是相对于基因组变量的聚类计算富集,其性能强烈依赖于聚类算法和聚类数量。

结果

我们提出了一种新方法,即光谱基因集富集(SGSE),用于基因集与经验数据源之间关联的无监督竞争性测试。SGSE首先使用我们的主成分基因集富集(PCGSE)方法计算基因集与主成分(PC)之间的统计关联。然后,通过使用加权Z方法组合PC水平的p值,并将权重设置为通过Tracy-Widom检验p值缩放的PC方差,计算每个基因集与数据光谱结构之间的总体统计关联。使用模拟数据,我们表明SGSE算法可以从噪声数据中准确恢复光谱特征。为了说明我们的方法在实际数据上的效用,我们展示了SGSE方法相对于基于标准聚类的技术在测试MSigDB基因集与微阵列基因表达数据的方差结构之间关联时的优越性能。

结论

无监督基因集测试可以提供有关高维基因组数据集中生物信号的重要信息。由于它使用基因集与样本PC之间的关联来生成无监督富集的度量,因此SGSE方法独立于聚类或网络创建算法,最重要的是,能够利用PC特征值的统计显著性来忽略数据中最可能代表噪声的元素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c50/4365810/79f62c42d298/12859_2015_490_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验