Merritt Stephanie M, Unnerstall Jennifer L, Lee Deborah, Huber Kelli
University of Missouri, St. Louis
University of Missouri, St. Louis.
Hum Factors. 2015 Aug;57(5):740-53. doi: 10.1177/0018720815581247. Epub 2015 Apr 16.
A self-report measure of the perfect automation schema (PAS) is developed and tested.
Researchers have hypothesized that the extent to which users possess a PAS is associated with greater decreases in trust after users encounter automation errors. However, no measure of the PAS currently exists. We developed a self-report measure assessing two proposed PAS factors: high expectations and all-or-none thinking about automation performance.
In two studies, participants responded to our PAS measure, interacted with imperfect automated aids, and reported trust.
Each of the two PAS measure factors demonstrated fit to the hypothesized factor structure and convergent and discriminant validity when compared with propensity to trust machines and trust in a specific aid. However, the high expectations and all-or-none thinking scales showed low intercorrelations and differential relationships with outcomes, suggesting that they might best be considered two separate constructs rather than two subfactors of the PAS. All-or-none thinking had significant associations with decreases in trust following aid errors, whereas high expectations did not. Results therefore suggest that the all-or-none thinking scale may best represent the PAS construct.
Our PAS measure (specifically, the all-or-none thinking scale) significantly predicted the severe trust decreases thought to be associated with high PAS. Further, it demonstrated acceptable psychometric properties across two samples.
This measure may be used in future work to assess levels of PAS in users of automated systems in either research or applied settings.
开发并测试一种完美自动化模式(PAS)的自我报告测量方法。
研究人员推测,用户拥有PAS的程度与用户遇到自动化错误后信任度的更大下降有关。然而,目前尚无PAS的测量方法。我们开发了一种自我报告测量方法,评估两个提出的PAS因素:对自动化性能的高期望和非此即彼思维。
在两项研究中,参与者对我们的PAS测量方法做出反应,与不完美的自动化辅助工具进行交互,并报告信任度。
与信任机器的倾向和对特定辅助工具的信任相比,PAS测量方法的两个因素均显示出符合假设的因素结构以及收敛效度和区分效度。然而,高期望和非此即彼思维量表显示出低相互关联以及与结果的差异关系,这表明它们可能最好被视为两个独立的结构,而不是PAS的两个子因素。非此即彼思维与辅助工具错误后信任度的下降有显著关联,而高期望则没有。因此,结果表明非此即彼思维量表可能最能代表PAS结构。
我们的PAS测量方法(具体而言,非此即彼思维量表)显著预测了被认为与高PAS相关的严重信任度下降。此外,它在两个样本中都表现出可接受的心理测量特性。
该测量方法可用于未来的研究工作,以评估研究或应用环境中自动化系统用户的PAS水平。