人工智能生物传感器用户信任的概念框架:整合认知、情境和对比
A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast.
作者信息
Prahl Andrew
机构信息
Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore 637718, Singapore.
出版信息
Sensors (Basel). 2025 Aug 2;25(15):4766. doi: 10.3390/s25154766.
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition-Context-Contrast (CCC) conceptual framework to explain the trust and acceptance of AI-enabled sensors. First, we map cognition, comprising the expectations and stereotypes that humans have about machines. Second, we integrate task context by situating sensor applications along an intellective-to-judgmental continuum and showing how demonstrability predicts tolerance for sensor uncertainty and/or errors. Third, we analyze contrast effects that arise when automated sensing displaces familiar human routines, heightening scrutiny and accelerating rejection if roll-out is abrupt. We then derive practical implications such as enhancing interpretability, tailoring data presentations to task demonstrability, and implementing transitional introduction phases. The framework offers researchers, engineers, and clinicians a structured conceptual framework for designing and implementing the next generation of AI biosensors.
人工智能(AI)技术已推动生物医学传感器从单纯测量生理指标,发展到能够解读压力、疼痛或情绪等主观状态。尽管有这些技术进步,但用户信任并无保障,且现有研究对此关注不足。本综述提出了认知 - 情境 - 对比(CCC)概念框架,以解释对人工智能驱动传感器的信任和接受情况。首先,我们梳理了认知,包括人类对机器的期望和刻板印象。其次,我们通过将传感器应用置于从智力型到判断型的连续统一体中,并展示可证明性如何预测对传感器不确定性和/或误差的容忍度,来整合任务情境。第三,我们分析了自动传感取代熟悉的人类常规操作时出现的对比效应,如果推出过程突然,会加剧审查并加速拒绝。然后,我们得出了一些实际意义,例如提高可解释性、根据任务可证明性定制数据呈现方式,以及实施过渡引入阶段。该框架为研究人员、工程师和临床医生提供了一个结构化的概念框架,用于设计和实施下一代人工智能生物传感器。