Miao Zhichao, Adamiak Ryszard W, Blanchet Marc-Frédérick, Boniecki Michal, Bujnicki Janusz M, Chen Shi-Jie, Cheng Clarence, Chojnowski Grzegorz, Chou Fang-Chieh, Cordero Pablo, Cruz José Almeida, Ferré-D'Amaré Adrian R, Das Rhiju, Ding Feng, Dokholyan Nikolay V, Dunin-Horkawicz Stanislaw, Kladwang Wipapat, Krokhotin Andrey, Lach Grzegorz, Magnus Marcin, Major François, Mann Thomas H, Masquida Benoît, Matelska Dorota, Meyer Mélanie, Peselis Alla, Popenda Mariusz, Purzycka Katarzyna J, Serganov Alexander, Stasiewicz Juliusz, Szachniuk Marta, Tandon Arpit, Tian Siqi, Wang Jian, Xiao Yi, Xu Xiaojun, Zhang Jinwei, Zhao Peinan, Zok Tomasz, Westhof Eric
Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67000 Strasbourg, France.
Department of Structural Chemistry and Biology of Nucleic Acids, Structural Chemistry of Nucleic Acids Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
RNA. 2015 Jun;21(6):1066-84. doi: 10.1261/rna.049502.114. Epub 2015 Apr 16.
This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.
本文是关于第二轮RNA解谜竞赛的报告,这是一项关于三维(3D)RNA结构预测的集体盲测实验。谜题5、6和10代表了三个大型RNA结构的序列,它们与先前解析的RNA分子的同源性有限或没有同源性。七个团队使用RNAComposer、ModeRNA/SimRNA、Vfold、Rosetta、DMD、MC-Fold、3dRNA和AMBER精修程序预测了套索帽状核酶以及与腺苷钴胺素和tRNA复合的核糖开关。一些团队使用来自最先进的化学图谱方法(SHAPE、DMS、CMCT和突变-图谱法)的数据构建模型。预测结果与随后发布的三个晶体结构(衍射分辨率为2.5-3.2 Å)之间的比较是使用各种质量指标自动进行的。这些比较清楚地展示了当前从头预测能力的状况以及这些最先进方法的局限性。所有最佳预测模型的拓扑结构都与天然结构相似,这表明RNA结构预测的计算方法已经可以为生物学问题提供有用的结构信息。然而,对于RNA正确折叠的关键——非沃森-克里克相互作用的预测准确性较低,并且一些预测模型的冲突分数较高。这两个难题指出了RNA结构预测中一些持续存在的瓶颈。所有提交的模型均可在http://ahsoka.u-strasbg.fr/rnapuzzles/上下载。