Cordero Pablo, Kladwang Wipapat, VanLang Christopher C, Das Rhiju
Methods Mol Biol. 2014;1086:53-77. doi: 10.1007/978-1-62703-667-2_4.
Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput readouts, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Systematically carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecule's "contact map." Here, we give our in-house protocol for this "mutate-and-map" (M2) strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.
化学图谱分析是一种广泛应用于核酸结构分析的技术,该技术能够在单核苷酸分辨率下对分子与不同探针的反应活性进行定量,并用于限制结构建模。在过去十年中,随着高通量读数、化学修饰和快速数据分析等新策略的出现,这一实验框架得到了广泛的重新审视。最近,我们将该技术与高通量诱变相结合。碱基配对核苷酸的点突变不仅会导致该核苷酸暴露,还会导致其相互作用伙伴暴露。对整个系统进行系统的突变和图谱分析,可以得到分子“接触图谱”的实验近似值。在这里,我们给出基于96孔毛细管电泳的“诱变与图谱分析”(M2)策略的内部方案,并提供解释数据以推断核酸结构的实用技巧。