Suppr超能文献

用于推断结构化RNA中碱基对的突变与映射协议。

The mutate-and-map protocol for inferring base pairs in structured RNA.

作者信息

Cordero Pablo, Kladwang Wipapat, VanLang Christopher C, Das Rhiju

出版信息

Methods Mol Biol. 2014;1086:53-77. doi: 10.1007/978-1-62703-667-2_4.

Abstract

Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput readouts, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Systematically carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecule's "contact map." Here, we give our in-house protocol for this "mutate-and-map" (M2) strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.

摘要

化学图谱分析是一种广泛应用于核酸结构分析的技术,该技术能够在单核苷酸分辨率下对分子与不同探针的反应活性进行定量,并用于限制结构建模。在过去十年中,随着高通量读数、化学修饰和快速数据分析等新策略的出现,这一实验框架得到了广泛的重新审视。最近,我们将该技术与高通量诱变相结合。碱基配对核苷酸的点突变不仅会导致该核苷酸暴露,还会导致其相互作用伙伴暴露。对整个系统进行系统的突变和图谱分析,可以得到分子“接触图谱”的实验近似值。在这里,我们给出基于96孔毛细管电泳的“诱变与图谱分析”(M2)策略的内部方案,并提供解释数据以推断核酸结构的实用技巧。

相似文献

1
The mutate-and-map protocol for inferring base pairs in structured RNA.
Methods Mol Biol. 2014;1086:53-77. doi: 10.1007/978-1-62703-667-2_4.
2
A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA.
RNA. 2011 Mar;17(3):522-34. doi: 10.1261/rna.2516311. Epub 2011 Jan 14.
4
Direct identification of base-paired RNA nucleotides by correlated chemical probing.
RNA. 2017 Jan;23(1):6-13. doi: 10.1261/rna.058586.116. Epub 2016 Nov 1.
5
High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis.
Nucleic Acids Res. 2008 Jun;36(11):e63. doi: 10.1093/nar/gkn267. Epub 2008 May 13.
6
SHAPE analysis of small RNAs and riboswitches.
Methods Enzymol. 2014;549:165-87. doi: 10.1016/B978-0-12-801122-5.00008-8.
7
Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding.
Nucleic Acids Res. 2017 Jul 7;45(12):e109. doi: 10.1093/nar/gkx233.
8
High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states.
RNA. 2014 Nov;20(11):1815-26. doi: 10.1261/rna.044321.114. Epub 2014 Sep 2.
10
RNA structure inference through chemical mapping after accidental or intentional mutations.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9876-9881. doi: 10.1073/pnas.1619897114. Epub 2017 Aug 29.

引用本文的文献

2
A conserved class of viral RNA structures regulates translation reinitiation through dynamic ribosome interactions.
Cell Rep. 2025 Feb 25;44(2):115236. doi: 10.1016/j.celrep.2025.115236. Epub 2025 Feb 1.
3
RNA tertiary structure and conformational dynamics revealed by BASH MaP.
Elife. 2024 Dec 3;13:RP98540. doi: 10.7554/eLife.98540.
4
RNA-Puzzles Round V: blind predictions of 23 RNA structures.
Nat Methods. 2025 Feb;22(2):399-411. doi: 10.1038/s41592-024-02543-9. Epub 2024 Dec 2.
5
Identification of RNA structures and their roles in RNA functions.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):784-801. doi: 10.1038/s41580-024-00748-6. Epub 2024 Jun 26.
6
RNA tertiary structure and conformational dynamics revealed by BASH MaP.
bioRxiv. 2024 Aug 19:2024.04.11.589009. doi: 10.1101/2024.04.11.589009.
7
Diversity and modularity of tyrosine-accepting tRNA-like structures.
RNA. 2024 Feb 16;30(3):213-222. doi: 10.1261/rna.079768.123.
8
Efficient 3'-pairing renders microRNA targeting less sensitive to mRNA seed accessibility.
Nucleic Acids Res. 2023 Nov 10;51(20):11162-11177. doi: 10.1093/nar/gkad795.
9
RNA:RNA interaction in ternary complexes resolved by chemical probing.
RNA. 2023 Mar;29(3):317-329. doi: 10.1261/rna.079190.122. Epub 2022 Dec 20.
10
Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2.
Nat Med. 2022 Sep;28(9):1944-1955. doi: 10.1038/s41591-022-01908-x. Epub 2022 Aug 18.

本文引用的文献

1
RNA SHAPE analysis in living cells.
Nat Chem Biol. 2013 Jan;9(1):18-20. doi: 10.1038/nchembio.1131. Epub 2012 Nov 25.
2
An RNA Mapping DataBase for curating RNA structure mapping experiments.
Bioinformatics. 2012 Nov 15;28(22):3006-8. doi: 10.1093/bioinformatics/bts554. Epub 2012 Sep 12.
3
Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference.
Biochemistry. 2012 Sep 11;51(36):7037-9. doi: 10.1021/bi3008802. Epub 2012 Aug 29.
4
RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction.
Nucleic Acids Res. 2012 May;40(10):4261-72. doi: 10.1093/nar/gks009. Epub 2012 Jan 28.
5
A two-dimensional mutate-and-map strategy for non-coding RNA structure.
Nat Chem. 2011 Oct 30;3(12):954-62. doi: 10.1038/nchem.1176.
6
Understanding the errors of SHAPE-directed RNA structure modeling.
Biochemistry. 2011 Sep 20;50(37):8049-56. doi: 10.1021/bi200524n. Epub 2011 Aug 25.
7
Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11063-8. doi: 10.1073/pnas.1106501108. Epub 2011 Jun 3.
8
Sharing and archiving nucleic acid structure mapping data.
RNA. 2011 Jul;17(7):1204-12. doi: 10.1261/rna.2753211. Epub 2011 May 24.
9
HiTRACE: high-throughput robust analysis for capillary electrophoresis.
Bioinformatics. 2011 Jul 1;27(13):1798-805. doi: 10.1093/bioinformatics/btr277. Epub 2011 May 10.
10
A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA.
RNA. 2011 Mar;17(3):522-34. doi: 10.1261/rna.2516311. Epub 2011 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验