Suppr超能文献

基于同步二元和连续行为测量估计潜在注意状态。

Estimating latent attentional states based on simultaneous binary and continuous behavioral measures.

作者信息

Chen Zhe

机构信息

Departments of Psychiatry, Neuroscience and Physiology, School of Medicine, New York University, New York, NY 10016, USA.

出版信息

Comput Intell Neurosci. 2015;2015:493769. doi: 10.1155/2015/493769. Epub 2015 Mar 26.

Abstract

Cognition is a complex and dynamic process. It is an essential goal to estimate latent attentional states based on behavioral measures in many sequences of behavioral tasks. Here, we propose a probabilistic modeling and inference framework for estimating the attentional state using simultaneous binary and continuous behavioral measures. The proposed model extends the standard hidden Markov model (HMM) by explicitly modeling the state duration distribution, which yields a special example of the hidden semi-Markov model (HSMM). We validate our methods using computer simulations and experimental data. In computer simulations, we systematically investigate the impacts of model mismatch and the latency distribution. For the experimental data collected from a rodent visual detection task, we validate the results with predictive log-likelihood. Our work is useful for many behavioral neuroscience experiments, where the common goal is to infer the discrete (binary or multinomial) state sequences from multiple behavioral measures.

摘要

认知是一个复杂且动态的过程。在许多行为任务序列中,基于行为测量来估计潜在的注意力状态是一个重要目标。在此,我们提出了一个概率建模与推理框架,用于利用同时出现的二元和连续行为测量来估计注意力状态。所提出的模型通过明确对状态持续时间分布进行建模,扩展了标准隐马尔可夫模型(HMM),这产生了隐半马尔可夫模型(HSMM)的一个特殊示例。我们使用计算机模拟和实验数据来验证我们的方法。在计算机模拟中,我们系统地研究了模型不匹配和潜伏期分布的影响。对于从啮齿动物视觉检测任务收集的实验数据,我们用预测对数似然性来验证结果。我们的工作对许多行为神经科学实验有用,这些实验的共同目标是从多种行为测量中推断离散(二元或多项)状态序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9173/4391722/ab3059e68041/CIN2015-493769.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验