Das Jishnu, Gayvert Kaitlyn M, Bunea Florentina, Wegkamp Marten H, Yu Haiyuan
Department of Biological Statistics and Computational Biology, Cornell University, 335 Weill Hall, Ithaca, NY, 14853, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
BMC Genomics. 2015 Apr 3;16(1):263. doi: 10.1186/s12864-015-1465-9.
With the explosion of genomic data over the last decade, there has been a tremendous amount of effort to understand the molecular basis of cancer using informatics approaches. However, this has proven to be extremely difficult primarily because of the varied etiology and vast genetic heterogeneity of different cancers and even within the same cancer. One particularly challenging problem is to predict prognostic outcome of the disease for different patients.
Here, we present ENCAPP, an elastic-net-based approach that combines the reference human protein interactome network with gene expression data to accurately predict prognosis for different human cancers. Our method identifies functional modules that are differentially expressed between patients with good and bad prognosis and uses these to fit a regression model that can be used to predict prognosis for breast, colon, rectal, and ovarian cancers. Using this model, ENCAPP can also identify prognostic biomarkers with a high degree of confidence, which can be used to generate downstream mechanistic and therapeutic insights.
ENCAPP is a robust method that can accurately predict prognostic outcome and identify biomarkers for different human cancers.
在过去十年中,随着基因组数据的爆炸式增长,人们付出了巨大努力,运用信息学方法来理解癌症的分子基础。然而,事实证明这极其困难,主要原因是不同癌症甚至同一癌症内部病因各异且存在巨大的基因异质性。一个特别具有挑战性的问题是预测不同患者的疾病预后结果。
在此,我们展示了ENCAPP,这是一种基于弹性网络的方法,它将参考人类蛋白质相互作用组网络与基因表达数据相结合,以准确预测不同人类癌症的预后。我们的方法识别出在预后良好和预后不良的患者之间差异表达的功能模块,并利用这些模块拟合一个回归模型,该模型可用于预测乳腺癌、结肠癌、直肠癌和卵巢癌的预后。使用这个模型,ENCAPP还能高度自信地识别预后生物标志物,这些生物标志物可用于产生下游的机制和治疗见解。
ENCAPP是一种强大的方法,能够准确预测不同人类癌症的预后结果并识别生物标志物。