Suppr超能文献

Locomo-Net:一种用于基于表面肌电信号的手部运动识别以实现假肢控制的低复杂度深度学习框架。

Locomo-Net: A Low -Complex Deep Learning Framework for sEMG-Based Hand Movement Recognition for Prosthetic Control.

作者信息

Gautam Arvind, Panwar Madhuri, Wankhede Archana, Arjunan Sridhar P, Naik Ganesh R, Acharyya Amit, Kumar Dinesh K

机构信息

Indian Institute of Technology HyderabadHyderabad502205India.

RMIT UniversityMelbourneVIC3001Australia.

出版信息

IEEE J Transl Eng Health Med. 2020 Sep 15;8:2100812. doi: 10.1109/JTEHM.2020.3023898. eCollection 2020.

Abstract

The enhancement in the performance of the myoelectric pattern recognition techniques based on deep learning algorithm possess computationally expensive and exhibit extensive memory behavior. Therefore, in this paper we report a deep learning framework named 'Low-Complex Movement recognition-Net' (LoCoMo-Net) built with convolution neural network (CNN) for recognition of wrist and finger flexion movements; grasping and functional movements; and force pattern from single channel surface electromyography (sEMG) recording. The network consists of a two-stage pipeline: 1) input data compression; 2) data-driven weight sharing. The proposed framework was validated on two different datasets- our own dataset (DS1) and publicly available NinaPro dataset (DS2) for 16 movements and 50 movements respectively. Further, we have prototyped the proposed on Virtex-7 Xilinx field-programmable gate array (FPGA) platform and validated for 15 movements from DS1 to demonstrate its feasibility for real-time execution. The effectiveness of the proposed was verified by a comparative analysis against the benchmarked models using the same datasets wherein our proposed model outperformed Twin- Support Vector Machine (SVM) and existing CNN based model by an average classification accuracy of 8.5 % and 16.0 % respectively. In addition, hardware complexity analysis is done to reveal the advantages of the two-stage pipeline where approximately 27 %, 49 %, 50 %, 23 %, and 43 % savings achieved in lookup tables (LUT's), registers, memory, power consumption and computational time respectively. The clinical significance of such sEMG based accurate and low-complex movement recognition system can be favorable for the potential improvement in quality of life of an amputated persons.

摘要

基于深度学习算法的肌电模式识别技术在性能提升方面存在计算成本高昂且内存占用量大的问题。因此,在本文中,我们报告了一种名为“低复杂度运动识别网络”(LoCoMo-Net)的深度学习框架,它由卷积神经网络(CNN)构建而成,用于识别手腕和手指的屈伸运动、抓握和功能运动,以及从单通道表面肌电图(sEMG)记录中识别力模式。该网络由一个两阶段的流水线组成:1)输入数据压缩;2)数据驱动的权重共享。所提出的框架在两个不同的数据集上进行了验证——我们自己的数据集(DS1)和公开可用的NinaPro数据集(DS2),分别用于16种运动和50种运动。此外,我们在Virtex-7赛灵思现场可编程门阵列(FPGA)平台上对所提出的框架进行了原型设计,并针对DS1中的15种运动进行了验证,以证明其实时执行的可行性。通过使用相同数据集与基准模型进行对比分析,验证了所提出框架的有效性,其中我们提出的模型分别比双支持向量机(SVM)和现有的基于CNN的模型平均分类准确率高出8.5%和16.0%。此外,还进行了硬件复杂度分析,以揭示两阶段流水线的优势,在查找表(LUT)、寄存器、内存、功耗和计算时间方面分别实现了约27%、49%、50%、23%和43%的节省。这种基于sEMG的准确且低复杂度运动识别系统的临床意义可能有利于截肢者生活质量的潜在改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79d/7529116/30097d6dab1f/achar1-3023898.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验