Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, USA.
Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
Biomaterials. 2015;53:309-17. doi: 10.1016/j.biomaterials.2015.02.074. Epub 2015 Mar 17.
Collagen's ability to direct cellular behavior suggests that redesigning it at the molecular level could enable manipulation of cells residing in an engineered microenvironment. However, the fabrication of full-length collagen mimics of specified sequence de novo has been elusive, and applications still rely on material from native tissues. Using a bottom-up strategy, we synthesized modular genes and expressed recombinant human collagen variants in Saccharomyces cerevisiae. The resulting biopolymers contained prescribed cell-interaction sites that can direct and tune cellular responses, with retention of the important triple-helical self-assembled structure. Removal of the native integrin-binding sites GROGER, GAOGER, GLOGEN, GLKGEN, and GMOGER in human collagen III yielded collagen that did not support adhesion of mammalian cells. Introduction of GFOGER sequences to this scaffold at specified locations and densities resulted in varying degrees of cellular attachment. The recruitment of focal adhesion complexes on the different collagens ranged from a 96% reduction to a 56% increase over native collagen I. Adhesion to the GFOGER-containing variants was entirely dependent and partially dependent on the β1 and α2 subunits of integrin, respectively, with cell adhesion on average reduced by 86% with anti-β1 and 38% with anti-α2 integrin antibody incubation. Results support the importance of local context in collagen-cell interactions. The investigation demonstrates the flexibility of this approach to introduce targeted changes throughout the collagen polymer for producing fully-prescribed variants with tailored properties.
胶原指导细胞行为的能力表明,在分子水平上重新设计它可以实现对工程微环境中细胞的操纵。然而,从头合成具有指定序列的全长胶原模拟物一直难以实现,应用仍然依赖于天然组织的材料。我们使用自下而上的策略,在酿酒酵母中合成了模块化基因,并表达了重组人胶原变体。所得生物聚合物包含预定的细胞相互作用位点,可指导和调节细胞反应,并保留重要的三螺旋自组装结构。从人胶原 III 中去除天然整联蛋白结合位点 GROGER、GAOGER、GLOGEN、GLKGEN 和 GMOGER,得到的胶原不支持哺乳动物细胞的粘附。在该支架的指定位置和密度处引入 GFOGER 序列,导致细胞附着程度不同。不同胶原上的粘着斑复合物的募集程度从比天然胶原 I 降低 96%到增加 56%不等。对含有 GFOGER 的变体的粘附完全依赖于整联蛋白的β1 和α2 亚基,分别用抗β1 和抗α2 整联蛋白抗体孵育,细胞粘附平均降低 86%和 38%。结果支持局部环境在胶原细胞相互作用中的重要性。该研究证明了这种方法的灵活性,可以在胶原聚合物中引入靶向变化,以产生具有定制特性的完全规定变体。