Suppr超能文献

用于胰腺癌的奥莫昔芬纳米颗粒制剂

Nanoparticle formulation of ormeloxifene for pancreatic cancer.

作者信息

Khan Sheema, Chauhan Neeraj, Yallapu Murali M, Ebeling Mara C, Balakrishna Swathi, Ellis Robert T, Thompson Paul A, Balabathula Pavan, Behrman Stephen W, Zafar Nadeem, Singh Man M, Halaweish Fathi T, Jaggi Meena, Chauhan Subhash C

机构信息

Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.

Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA.

出版信息

Biomaterials. 2015;53:731-43. doi: 10.1016/j.biomaterials.2015.02.082. Epub 2015 Mar 26.

Abstract

Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.

摘要

胰腺癌是第四大常见癌症,死亡率约为85%;因此,迫切需要发现新的治疗方法,以提高该疾病的治疗效果,同时副作用最小或无副作用。奥美昔芬(ORM)是一种合成分子,通过抑制重要的致癌和增殖信号通路,已显示出强大的抗癌作用。然而,通过开发其纳米制剂可以进一步提高ORM的抗癌疗效,这也将提供肿瘤特异性靶向递送。因此,我们开发了一种新型的包封有ORM的聚乳酸-乙醇酸共聚物纳米颗粒(NP)制剂(PLGA-ORM NP)。使用各种物理化学方法(透射电子显微镜、傅里叶变换红外光谱、差示扫描量热法、热重分析法和高效液相色谱法)对该制剂的粒径、化学成分和载药效率进行了表征。由于其组成简便,这种新型制剂与抗体/适配体偶联兼容,可实现肿瘤特异性靶向。该PLGA-ORM制剂的粒径分析(约100纳米)表明,该制剂可通过增强渗透和滞留(EPR)效应优先到达并积聚在肿瘤中。细胞摄取和内化研究表明,PLGA-ORM NPs可逃避溶酶体降解,实现向内质网的高效释放。PLGA-ORM NPs在各种胰腺癌细胞(HPAF-II、AsPC-1、BxPC-3、Panc-1和MiaPaca)以及BxPC-3异种移植小鼠模型中显示出显著的抗癌潜力,从而提高了动物存活率。PLGA-ORM NPs通过抑制Akt磷酸化以及MUC1、HER2、PCNA、CK19和CD31的表达来抑制胰腺肿瘤生长。这项研究表明,PLGA-ORM制剂对抑制胰腺肿瘤生长非常有效,因此未来对胰腺癌的治疗可能具有重要价值。

相似文献

1
Nanoparticle formulation of ormeloxifene for pancreatic cancer.
Biomaterials. 2015;53:731-43. doi: 10.1016/j.biomaterials.2015.02.082. Epub 2015 Mar 26.
2
Ormeloxifene nanotherapy for cervical cancer treatment.
Int J Nanomedicine. 2019 Sep 3;14:7107-7121. doi: 10.2147/IJN.S200944. eCollection 2019.
3
Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma.
Int J Nanomedicine. 2017 Jul 24;12:5255-5269. doi: 10.2147/IJN.S139507. eCollection 2017.
4
Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment.
Mol Cancer Ther. 2013 Aug;12(8):1471-80. doi: 10.1158/1535-7163.MCT-12-1227. Epub 2013 May 23.
5
Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells.
J Colloid Interface Sci. 2010 Nov 1;351(1):19-29. doi: 10.1016/j.jcis.2010.05.022. Epub 2010 May 12.
6
Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.
Drug Dev Ind Pharm. 2018 Sep;44(9):1434-1442. doi: 10.1080/03639045.2018.1459674. Epub 2018 May 2.
7
Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
Biomaterials. 2009 Jul;30(19):3297-306. doi: 10.1016/j.biomaterials.2009.02.045. Epub 2009 Mar 19.
8
PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo.
Int J Mol Med. 2015 Apr;35(4):995-1002. doi: 10.3892/ijmm.2015.2096. Epub 2015 Feb 11.
10
Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer.
Int J Pharm. 2015 Oct 15;494(1):506-15. doi: 10.1016/j.ijpharm.2015.08.055. Epub 2015 Aug 24.

引用本文的文献

1
Polysaccharide-Stabilized Selenium Nanoparticles Deliver Triptolide to Induce Apoptosis for Pancreatic Cancer and .
ACS Omega. 2025 Apr 22;10(17):17108-17122. doi: 10.1021/acsomega.4c04743. eCollection 2025 May 6.
3
Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors.
Front Bioeng Biotechnol. 2023 Feb 16;11:1092901. doi: 10.3389/fbioe.2023.1092901. eCollection 2023.
4
Recent nanotechnology advancements to treat multidrug-resistance pancreatic cancer: Pre-clinical and clinical overview.
Front Pharmacol. 2022 Aug 24;13:933457. doi: 10.3389/fphar.2022.933457. eCollection 2022.
5
Assessment of Residual Solvent and Drug in PLGA Microspheres by Derivative Thermogravimetry.
Pharmaceutics. 2020 Jul 4;12(7):626. doi: 10.3390/pharmaceutics12070626.
6
Polymer nanoparticle-assisted chemotherapy of pancreatic cancer.
Ther Adv Med Oncol. 2020 May 8;12:1758835920915978. doi: 10.1177/1758835920915978. eCollection 2020.
7
Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells.
Pharmaceutics. 2020 Mar 22;12(3):285. doi: 10.3390/pharmaceutics12030285.
8
Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells.
ACS Omega. 2020 Jan 9;5(2):1147-1156. doi: 10.1021/acsomega.9b03382. eCollection 2020 Jan 21.
9
Ormeloxifene nanotherapy for cervical cancer treatment.
Int J Nanomedicine. 2019 Sep 3;14:7107-7121. doi: 10.2147/IJN.S200944. eCollection 2019.
10
Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment.
Nanomedicine. 2019 Aug;20:102027. doi: 10.1016/j.nano.2019.102027. Epub 2019 Jun 4.

本文引用的文献

1
Metformin: from mechanisms of action to therapies.
Cell Metab. 2014 Dec 2;20(6):953-66. doi: 10.1016/j.cmet.2014.09.018. Epub 2014 Oct 30.
2
Metformin in cancer prevention and therapy.
Ann Transl Med. 2014 Jun;2(6):57. doi: 10.3978/j.issn.2305-5839.2014.06.01.
3
Ormeloxifene efficiently inhibits ovarian cancer growth.
Cancer Lett. 2015 Jan 28;356(2 Pt B):606-12. doi: 10.1016/j.canlet.2014.10.009. Epub 2014 Oct 13.
4
MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer.
Oncotarget. 2014 Sep 15;5(17):7599-609. doi: 10.18632/oncotarget.2281.
5
Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer.
Biomaterials. 2014 Oct;35(30):8635-48. doi: 10.1016/j.biomaterials.2014.06.040. Epub 2014 Jul 12.
6
Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery.
Tumour Biol. 2014 Jun;35(6):5101-10. doi: 10.1007/s13277-014-1676-8. Epub 2014 Feb 7.
7
New horizons for old drugs and drug leads.
J Nat Prod. 2014 Mar 28;77(3):703-23. doi: 10.1021/np5000796. Epub 2014 Feb 5.
8
Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology.
Adv Drug Deliv Rev. 2014 Feb;66:2-25. doi: 10.1016/j.addr.2013.11.009. Epub 2013 Nov 22.
9
The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?
Nanotechnol Sci Appl. 2012 Sep 7;5:87-100. doi: 10.2147/NSA.S25515.
10
Drug repurposing: translational pharmacology, chemistry, computers and the clinic.
Curr Top Med Chem. 2013;13(18):2328-36. doi: 10.2174/15680266113136660163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验