Suppr超能文献

从 GWAS 汇总数据中定位复杂性状共享跨种族遗传结构的组成部分。

Localizing Components of Shared Transethnic Genetic Architecture of Complex Traits from GWAS Summary Data.

机构信息

Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Am J Hum Genet. 2020 Jun 4;106(6):805-817. doi: 10.1016/j.ajhg.2020.04.012. Epub 2020 May 21.

Abstract

Despite strong transethnic genetic correlations reported in the literature for many complex traits, the non-transferability of polygenic risk scores across populations suggests the presence of population-specific components of genetic architecture. We propose an approach that models GWAS summary data for one trait in two populations to estimate genome-wide proportions of population-specific/shared causal SNPs. In simulations across various genetic architectures, we show that our approach yields approximately unbiased estimates with in-sample LD and slight upward-bias with out-of-sample LD. We analyze nine complex traits in individuals of East Asian and European ancestry, restricting to common SNPs (MAF > 5%), and find that most common causal SNPs are shared by both populations. Using the genome-wide estimates as priors in an empirical Bayes framework, we perform fine-mapping and observe that high-posterior SNPs (for both the population-specific and shared causal configurations) have highly correlated effects in East Asians and Europeans. In population-specific GWAS risk regions, we observe a 2.8× enrichment of shared high-posterior SNPs, suggesting that population-specific GWAS risk regions harbor shared causal SNPs that are undetected in the other GWASs due to differences in LD, allele frequencies, and/or sample size. Finally, we report enrichments of shared high-posterior SNPs in 53 tissue-specific functional categories and find evidence that SNP-heritability enrichments are driven largely by many low-effect common SNPs.

摘要

尽管文献中报道了许多复杂性状的跨种族强遗传相关性,但多基因风险评分在人群之间不可转移表明遗传结构存在特定于人群的成分。我们提出了一种方法,该方法可以对两个群体中的一个性状的 GWAS 汇总数据进行建模,以估计全基因组中特定于群体/共享因果 SNP 的比例。在各种遗传结构的模拟中,我们表明我们的方法在样本内 LD 下产生了近似无偏估计,在样本外 LD 下略有向上偏差。我们分析了东亚和欧洲血统个体的 9 种复杂性状,限制在常见 SNP(MAF>5%)上,并发现大多数常见的因果 SNP 是两个群体共有的。我们使用全基因组估计作为经验贝叶斯框架中的先验,进行精细映射,并观察到高后验 SNP(对于特定于群体和共享因果配置)在东亚人和欧洲人中具有高度相关的效应。在特定于群体的 GWAS 风险区域中,我们观察到共享高后验 SNP 富集了 2.8 倍,这表明特定于群体的 GWAS 风险区域中存在共享的因果 SNP,由于 LD、等位基因频率和/或样本大小的差异,在其他 GWAS 中未被检测到。最后,我们报告了 53 个组织特异性功能类别中共享高后验 SNP 的富集情况,并发现 SNP 遗传力富集主要是由许多低效应常见 SNP 驱动的。

相似文献

1
Localizing Components of Shared Transethnic Genetic Architecture of Complex Traits from GWAS Summary Data.
Am J Hum Genet. 2020 Jun 4;106(6):805-817. doi: 10.1016/j.ajhg.2020.04.012. Epub 2020 May 21.
2
Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits.
PLoS Comput Biol. 2021 Oct 21;17(10):e1009483. doi: 10.1371/journal.pcbi.1009483. eCollection 2021 Oct.
3
Transethnic differences in GWAS signals: A simulation study.
Ann Hum Genet. 2018 Sep;82(5):280-286. doi: 10.1111/ahg.12251. Epub 2018 May 7.
5
Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies.
Am J Hum Genet. 2022 Aug 4;109(8):1388-1404. doi: 10.1016/j.ajhg.2022.07.002.
6
Bayesian approach to assessing population differences in genetic risk of disease with application to prostate cancer.
PLoS Genet. 2024 Apr 17;20(4):e1011212. doi: 10.1371/journal.pgen.1011212. eCollection 2024 Apr.
9
High trans-ethnic replicability of GWAS results implies common causal variants.
PLoS Genet. 2013 Jun;9(6):e1003566. doi: 10.1371/journal.pgen.1003566. Epub 2013 Jun 13.

引用本文的文献

1
Towards improved fine-mapping of candidate causal variants.
Nat Rev Genet. 2025 Jul 28. doi: 10.1038/s41576-025-00869-4.
3
Methodological opportunities in genomic data analysis to advance health equity.
Nat Rev Genet. 2025 May 15. doi: 10.1038/s41576-025-00839-w.
4
Precision proteogenomics reveals pan-cancer impact of germline variants.
Cell. 2025 May 1;188(9):2312-2335.e26. doi: 10.1016/j.cell.2025.03.026. Epub 2025 Apr 14.
5
Allele frequency impacts the cross-ancestry portability of gene expression prediction in lymphoblastoid cell lines.
Am J Hum Genet. 2024 Dec 5;111(12):2814-2825. doi: 10.1016/j.ajhg.2024.10.009. Epub 2024 Nov 15.
7
Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.
Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5). doi: 10.1093/gpbjnl/qzae077.
8
A comprehensive framework for trans-ancestry pathway analysis using GWAS summary data from diverse populations.
PLoS Genet. 2024 Oct 23;20(10):e1011322. doi: 10.1371/journal.pgen.1011322. eCollection 2024 Oct.
9
Comparison of methods for building polygenic scores for diverse populations.
HGG Adv. 2025 Jan 9;6(1):100355. doi: 10.1016/j.xhgg.2024.100355. Epub 2024 Sep 25.
10
The goldmine of GWAS summary statistics: a systematic review of methods and tools.
BioData Min. 2024 Sep 5;17(1):31. doi: 10.1186/s13040-024-00385-x.

本文引用的文献

3
Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model.
PLoS Genet. 2020 May 19;16(5):e1008612. doi: 10.1371/journal.pgen.1008612. eCollection 2020 May.
4
Comparative genetic architectures of schizophrenia in East Asian and European populations.
Nat Genet. 2019 Dec;51(12):1670-1678. doi: 10.1038/s41588-019-0512-x. Epub 2019 Nov 18.
5
Extreme Polygenicity of Complex Traits Is Explained by Negative Selection.
Am J Hum Genet. 2019 Sep 5;105(3):456-476. doi: 10.1016/j.ajhg.2019.07.003. Epub 2019 Aug 8.
6
Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture.
Nat Genet. 2019 Aug;51(8):1244-1251. doi: 10.1038/s41588-019-0465-0. Epub 2019 Jul 29.
8
Genomics of disease risk in globally diverse populations.
Nat Rev Genet. 2019 Sep;20(9):520-535. doi: 10.1038/s41576-019-0144-0. Epub 2019 Jun 24.
9
Genetic analyses of diverse populations improves discovery for complex traits.
Nature. 2019 Jun;570(7762):514-518. doi: 10.1038/s41586-019-1310-4. Epub 2019 Jun 19.
10
Clinical use of current polygenic risk scores may exacerbate health disparities.
Nat Genet. 2019 Apr;51(4):584-591. doi: 10.1038/s41588-019-0379-x. Epub 2019 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验