Suppr超能文献

生成具有社区结构的属性网络。

Generating attributed networks with communities.

作者信息

Largeron Christine, Mougel Pierre-Nicolas, Rabbany Reihaneh, Zaïane Osmar R

机构信息

Hubert Curien Laboratory, University of Lyon, Saint-Étienne, France.

Department of Computer Science, University of Alberta, Edmonton, Canada.

出版信息

PLoS One. 2015 Apr 20;10(3):e0122777. doi: 10.1371/journal.pone.0122777. eCollection 2015.

Abstract

In many modern applications data is represented in the form of nodes and their relationships, forming an information network. When nodes are described with a set of attributes we have an attributed network. Nodes and their relationships tend to naturally form into communities or clusters, and discovering these communities is paramount to many applications. Evaluating algorithms or comparing algorithms for automatic discovery of communities requires networks with known structures. Synthetic generators of networks have been proposed for this task but most solely focus on connectivity and their properties and overlook attribute values and the network properties vis-à-vis these attributes. In this paper, we propose a new generator for attributed networks with community structure that dependably follows the properties of real world networks.

摘要

在许多现代应用中,数据以节点及其关系的形式呈现,形成一个信息网络。当节点用一组属性来描述时,我们就有了一个带属性的网络。节点及其关系往往会自然地形成社区或集群,而发现这些社区对许多应用来说至关重要。评估用于自动发现社区的算法或比较这些算法需要具有已知结构的网络。针对此任务已经提出了网络的合成生成器,但大多数仅关注连通性及其属性,而忽略了属性值以及相对于这些属性的网络属性。在本文中,我们提出了一种用于具有社区结构的带属性网络的新生成器,该生成器能够可靠地遵循现实世界网络的属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf3/4404059/e512dee9c8f1/pone.0122777.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验