Uludağlı Muhtar Çağkan, Oğuz Kaya
Department of Computer Engineering, İzmir University of Economics, İzmir, Turkey.
PeerJ Comput Sci. 2024 Nov 22;10:e2483. doi: 10.7717/peerj-cs.2483. eCollection 2024.
Generating networks with attributes would be useful in computer game development by enabling dynamic social interactions, adaptive storylines, realistic economic systems, ecosystem modelling, urban development, strategic planning, and adaptive learning systems. To this end, we propose the Attribute-based Realistic Community and Associate NEtwork (ARCANE) algorithm to generate node-attributed networks with functional communities. We have designed a numerical node attribute-edge relationship computation system to handle the edge generation phase of our network generator, which is a different method from our predecessors. We combine this system with the proximity between nodes to create more life-like communities. Our method is compared against other node-attributed social network generators in the area with using both different evaluation metrics and a real-world dataset. The model properties evaluation identified ARCANE as the leading generator, with another generator ranking in a tie for first place. As a more favorable outcome for our approach, the community detection evaluation indicated that ARCANE exhibited superior performance compared to other competing generators within this domain. This thorough evaluation of the resulting graphs show that the proposed method can be an alternate approach to social network generators with node attributes and communities.
生成具有属性的网络在计算机游戏开发中很有用,它可以实现动态社交互动、自适应故事情节、现实的经济系统、生态系统建模、城市发展、战略规划和自适应学习系统。为此,我们提出了基于属性的现实社区与关联网络(ARCANE)算法,以生成具有功能社区的节点属性网络。我们设计了一个数值节点属性 - 边关系计算系统来处理网络生成器的边生成阶段,这是一种与我们的前辈不同的方法。我们将这个系统与节点之间的接近度相结合,以创建更逼真的社区。我们的方法与该领域的其他节点属性社交网络生成器进行了比较,使用了不同的评估指标和一个真实世界的数据集。模型属性评估将ARCANE确定为领先的生成器,另一个生成器并列排名第一。作为我们方法更有利的结果,社区检测评估表明,在该领域内,ARCANE与其他竞争生成器相比表现出卓越的性能。对生成的图的这种全面评估表明,所提出的方法可以成为具有节点属性和社区的社交网络生成器的替代方法。