†Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
‡Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany.
Nano Lett. 2015 May 13;15(5):3487-94. doi: 10.1021/acs.nanolett.5b00851. Epub 2015 Apr 28.
Tools for controlling the spatial organization of proteins are a major prerequisite for deciphering mechanisms governing the dynamic architecture of living cells. Here, we have developed a generic approach for inducing and maintaining protein gradients inside living cells by means of biofunctionalized magnetic nanoparticles (MNPs). For this purpose, we tailored the size and surface properties of MNPs in order to ensure unhindered mobility in the cytosol. These MNPs with a core diameter below 50 nm could be rapidly relocalized in living cells by exploiting biased diffusion at weak magnetic forces in the femto-Newton range. In combination with MNP surface functionalization for specific in situ capturing of target proteins as well as efficient delivery into the cytosplasm, we here present a comprehensive technology for controlling intracellular protein gradients with a temporal resolution of a few tens of seconds.
用于控制蛋白质空间组织的工具是破译控制活细胞动态结构的机制的主要前提。在这里,我们通过生物功能化的磁性纳米粒子(MNPs)开发了一种在活细胞内诱导和维持蛋白质梯度的通用方法。为此,我们调整了 MNPs 的大小和表面特性,以确保在细胞质中不受阻碍的迁移。这些核心直径小于 50nm 的 MNPs 可以通过利用弱磁场中的偏置扩散在飞牛范围内快速在活细胞中重新定位。结合 MNPs 表面功能化,用于特定的原位捕获靶蛋白以及高效递送到细胞质中,我们在这里提出了一种具有数十秒时间分辨率的控制细胞内蛋白质梯度的综合技术。