Perret Mélody, Pineda Estelle, Jeune Mathilde Le, Nguyen Tieu Ngoc, Michel Aude, Illien Françoise, Siaugue Jean-Michel, Ménager Christine, Burlina Fabienne, Secret Emilie
Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 place Jussieu, Paris, 75005, France.
Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 4 place Jussieu, Paris, 75005, France.
Small. 2025 Apr;21(13):e2410454. doi: 10.1002/smll.202410454. Epub 2025 Feb 19.
The specific targeting of intracellular proteins or organelles by magnetic nanoparticles (MNPs) is a major challenge in nanomedicine, as most MNPs are internalized by cells through endocytosis and remain trapped inside small intracellular vesicles, limiting their ability to reach intracellular components. Furthermore, this phenomenon limits their heating capacity in magnetic hyperthermia, and therefore their potential for cancer treatment. This study presents a strategy based on an original double functionalization of MNPs, with polyhistidine peptides (PHPs) triggering endosomal escape and antibodies targeting specific cytosolic proteins. Negatively charged γ-FeO@SiO MNPs with diameter smaller than 50 nm are functionalized with zwitterionic and thiol groups at their surface. These sulfhydryl groups are used to graft PHPs through a labile link, allowing the peptide to be released from the MNPs' surface once in the cytosolic reductive environment. This severing avoids any interaction between these peptides and intracellular components, which can hinder MNPs' intracellular mobility. The second MNPs' surface functionalization is performed through a non-labile link with antibodies targeting specific cytosolic proteins, namely HSP27 thermosensitive proteins, for this inaugural proof of concept. Bi-functionalized MNPs are able to successfully target the intracellular protein of interest, opening the door to promising biomedical applications of MNPs, in cellular engineering and magnetic hyperthermia.
磁性纳米颗粒(MNPs)对细胞内蛋白质或细胞器进行特异性靶向是纳米医学中的一项重大挑战,因为大多数MNPs通过内吞作用被细胞内化,并被困在小的细胞内囊泡中,限制了它们到达细胞内成分的能力。此外,这种现象限制了它们在磁热疗中的加热能力,从而限制了它们在癌症治疗中的潜力。本研究提出了一种基于MNPs原始双重功能化的策略,即利用多组氨酸肽(PHPs)触发内体逃逸,并使用抗体靶向特定的胞质蛋白。直径小于50nm的带负电荷的γ-FeO@SiO MNPs在其表面用两性离子和硫醇基团进行功能化。这些巯基用于通过不稳定连接接枝PHPs,使肽一旦进入胞质还原环境就从MNPs表面释放出来。这种切断避免了这些肽与细胞内成分之间的任何相互作用,而这种相互作用会阻碍MNPs在细胞内的移动性。MNPs的第二次表面功能化是通过与靶向特定胞质蛋白(即HSP27热敏感蛋白)的抗体进行非不稳定连接来实现的,用于这一开创性的概念验证。双功能化的MNPs能够成功地靶向感兴趣的细胞内蛋白,为MNPs在细胞工程和磁热疗中有前景的生物医学应用打开了大门。
ACS Appl Mater Interfaces. 2022-4-6
Adv Healthc Mater. 2017-10-9
Colloids Surf B Biointerfaces. 2016-5-1
ACS Cent Sci. 2024-4-17
ACS Appl Mater Interfaces. 2024-2-7