Suppr超能文献

卵巢肿瘤超声图像的自动特征提取:支持向量机与局部二值模式算子图像处理的诊断准确性

Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator.

作者信息

Khazendar S, Sayasneh A, Al-Assam H, Du H, Kaijser J, Ferrara L, Timmerman D, Jassim S, Bourne T

机构信息

Department of Applied Computing, University of Buckingham, Buckingham, MK18 1EG, U.K.

Department of Cancer and Surgery, Queen Charlotte's and Chelsea Hospital, Imperial College, London, W12 0HS, U.K.

出版信息

Facts Views Vis Obgyn. 2015;7(1):7-15.

Abstract

INTRODUCTION

Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management.

OBJECTIVES

In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant.

MATERIALS AND METHODS

Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected.

RESULTS

The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test).

CONCLUSION

We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.

摘要

引言

术前将卵巢肿块区分为良性或恶性对于优化患者管理至关重要。

目的

在本研究中,我们开发并验证了一种用于将卵巢肿块区分为良性或恶性的计算机模型。

材料与方法

纳入了187个具有已知组织学诊断的卵巢肿块的经阴道二维B模式静态超声图像。图像首先进行预处理和增强,然后从每个图像的2×2块中提取局部二值模式直方图。使用分层交叉验证和随机抽样对支持向量机(SVM)进行训练。该过程重复15次,每轮随机选择100张图像。

结果

SVM将原始未处理的静态图像分类为良性或恶性肿块,平均准确率为0.62(95%可信区间:0.59 - 0.65)。当图像进行预处理、增强并使用局部二值模式算子处理后,该性能显著提高至平均准确率0.77(95%可信区间:0.75 - 0.79)(平均差异0.15:95% 0.11 - 0.19,p < 0.0001,双尾t检验)。

结论

我们已经表明,支持向量机可以将卵巢肿块的静态二维B模式超声图像分类为良性和恶性类别。如果考虑从图像中提取的与纹理相关的局部二值模式特征,准确率会提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b13/4402446/0fed01eda6ab/FVVinObGyn-7-7-15-g001.jpg

相似文献

5
Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems.
Ultrasonics. 2012 Apr;52(4):508-20. doi: 10.1016/j.ultras.2011.11.003. Epub 2011 Nov 25.
6
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images.
PLoS One. 2019 Jul 26;14(7):e0219388. doi: 10.1371/journal.pone.0219388. eCollection 2019.
7
Ovarian tumor characterization using 3D ultrasound.
Technol Cancer Res Treat. 2012 Dec;11(6):543-52. doi: 10.7785/tcrt.2012.500272. Epub 2012 Jul 10.
8
Semiquantitative dynamic contrast-enhanced MRI for accurate classification of complex adnexal masses.
J Magn Reson Imaging. 2017 Feb;45(2):418-427. doi: 10.1002/jmri.25359. Epub 2016 Jul 1.
9

引用本文的文献

1
AI-based automated segmentation for ovarian/adnexal masses and their internal components on ultrasound imaging.
J Med Imaging (Bellingham). 2024 Jul;11(4):044505. doi: 10.1117/1.JMI.11.4.044505. Epub 2024 Aug 6.
2
Artificial intelligence as a teaching tool for gynaecological ultrasound: A systematic search and scoping review.
Australas J Ultrasound Med. 2023 Nov 20;27(1):5-11. doi: 10.1002/ajum.12368. eCollection 2024 Feb.
3
Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review.
Insights Imaging. 2023 Feb 15;14(1):34. doi: 10.1186/s13244-022-01345-x.
4
Automatic Detection and Segmentation of Ovarian Cancer Using a Multitask Model in Pelvic CT Images.
Oxid Med Cell Longev. 2022 Oct 11;2022:6009107. doi: 10.1155/2022/6009107. eCollection 2022.
5
A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients.
Arch Gynecol Obstet. 2022 Dec;306(6):2143-2154. doi: 10.1007/s00404-022-06578-1. Epub 2022 May 9.
6
The Use of Artificial Intelligence in Automation in the Fields of Gynaecology and Obstetrics - an Assessment of the State of Play.
Geburtshilfe Frauenheilkd. 2021 Nov 4;81(11):1203-1216. doi: 10.1055/a-1522-3029. eCollection 2021 Nov.
9
Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis.
Diagnostics (Basel). 2021 Apr 29;11(5):812. doi: 10.3390/diagnostics11050812.

本文引用的文献

1
Multicentre external validation of IOTA prediction models and RMI by operators with varied training.
Br J Cancer. 2013 Jun 25;108(12):2448-54. doi: 10.1038/bjc.2013.224. Epub 2013 May 14.
2
Ovarian tumor characterization and classification: a class of GyneScan™ systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4446-9. doi: 10.1109/EMBC.2012.6346953.
3
Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification.
Ultraschall Med. 2014 Jun;35(3):237-45. doi: 10.1055/s-0032-1330336. Epub 2012 Dec 20.
7
Real-time ultrasound vs. evaluation of static images in the preoperative assessment of adnexal masses.
Ultrasound Obstet Gynecol. 2008 Nov;32(6):828-31. doi: 10.1002/uog.6214.
8
Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods.
Ultrasound Obstet Gynecol. 2007 May;29(5):496-504. doi: 10.1002/uog.3996.
9
Texture analysis of medical images.
Clin Radiol. 2004 Dec;59(12):1061-9. doi: 10.1016/j.crad.2004.07.008.
10
An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans.
Ultrasound Med Biol. 2003 Nov;29(11):1561-70. doi: 10.1016/j.ultrasmedbio.2003.08.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验