Suppr超能文献

计算机辅助诊断在卵巢癌术前诊断中的分析:一项系统综述。

Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review.

作者信息

Koch Anna H, Jeelof Lara S, Muntinga Caroline L P, Gootzen T A, van de Kruis Nienke M A, Nederend Joost, Boers Tim, van der Sommen Fons, Piek Jurgen M J

机构信息

Department of Gynaecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ, Eindhoven, Noord-Brabant, The Netherlands.

Department of Radiology, Catharina Hospital, 5623 EJ, Eindhoven, Noord-Brabant, The Netherlands.

出版信息

Insights Imaging. 2023 Feb 15;14(1):34. doi: 10.1186/s13244-022-01345-x.

Abstract

OBJECTIVES

Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors.

METHODS

We searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards.

RESULTS

In thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6-100% and 66.7-100% and specificities ranged from 76.3-100%; 69-100% and 77.8-100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set.

CONCLUSION

Based on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.

摘要

目的

有多种不同的非侵入性成像方法可用于预测卵巢肿瘤的恶性可能性。然而,由于评估者的主观性,它们的预测价值有限。因此,需要更客观的预测模型。计算机辅助诊断(CAD)可能就是这样一种模型,因为它没有当前使用的模型所具有的偏差。在本研究中,我们评估了关于CAD在预测卵巢肿瘤恶性可能性方面的现有数据。

方法

我们检索了所有已发表的研究,这些研究调查了基于超声、CT和MRI的CAD在卵巢肿瘤术前患者中的诊断准确性,并与参考标准进行比较。

结果

在纳入的31项研究中,从三种不同成像技术提取的特征被用于不同的数学模型。所有研究均基于对超声、CT扫描和MRI扫描图像的机器学习来评估CAD。对于每种成像方法,随后是超声、CT和MRI,敏感性范围为40.3%至100%;84.6% - 100%和66.7% - 100%,特异性范围为76.3% - 100%;69% - 100%和77.8% - 100%。由于广泛的异质性,结果无法合并。尽管大多数研究报告了较高的性能,但由于缺乏独立测试集,它们存在相当大的过度拟合风险。

结论

基于这篇文献综述,用于超声、CT扫描和MRI扫描的不同CAD似乎很有前景,因其具有客观性和潜在的成本效益,可帮助医生评估卵巢肿瘤。然而,应针对每种成像技术评估其性能。需要有外部验证的前瞻性和更大的数据集,以使结果具有普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/173e/9931983/f938d0ebb3c7/13244_2022_1345_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验