Martín-Banderas L, Muñoz-Rubio I, Prados J, Álvarez-Fuentes J, Calderón-Montaño J M, López-Lázaro M, Arias J L, Leiva M C, Holgado M A, Fernández-Arévalo M
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain.
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain.
Int J Pharm. 2015 Jun 20;487(1-2):205-12. doi: 10.1016/j.ijpharm.2015.04.054. Epub 2015 Apr 18.
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈ 290 nm) increased upon coating with PEG, CS, and PEG-CS up to ≈ 590 nm, ≈ 745 nm, and ≈ 790 nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈ 95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.
纳米平台可以优化化疗以及癌症治疗的疗效和安全性。然而,在开发针对恶性细胞的新型纳米药物方面,仍鼓励采用新方法。在这项工作中,描述了一种可重复的方法来制备负载Δ(9)-四氢大麻酚(Δ(9)-THC)的聚(d,l-丙交酯-共-乙交酯)(PLGA)纳米颗粒用于肺癌治疗。通过用可生物降解的聚合物壳聚糖和聚乙二醇(PEG)进行表面功能化,进一步改进了纳米制剂,以优化其生物学命运和抗肿瘤效果。在用PEG、CS和PEG-CS包被后,平均纳米颗粒尺寸(≈290nm)分别增加到≈590nm、≈745nm和≈790nm。PLGA颗粒上的聚合物包被类型控制了表面电荷。药物包封率(≈95%)不受任何一种聚合物包被的影响。相反,当分别使用PEG或壳聚糖时,颗粒中Δ(9)-THC的特征性持续(双相)释放可以加快或减慢。血液相容性研究表明,所有基于PLGA的纳米制剂在体内都有足够的安全边际,而蛋白质吸附研究推测了聚乙二醇化对调理作用和血浆清除的保护作用。比较纳米制剂对人A-549和小鼠LL2肺腺癌细胞以及人胚肺成纤维细胞MRC-5细胞活性的细胞活力研究表明,对肺癌细胞系有统计学上显著的选择性细胞毒性作用。此外,在A-549细胞中的细胞毒性试验表明,负载Δ(9)-THC的聚乙二醇化PLGA纳米颗粒具有更强的抗癌活性。在荷LL2肺肿瘤的免疫活性C57BL/6小鼠中进行的体内研究证实了这些有前景的结果。