El-Hammadi Mazen M, Arias José L
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
Nanomaterials (Basel). 2022 Jan 22;12(3):354. doi: 10.3390/nano12030354.
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide--glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
治疗药物通常具有血浆半衰期短和对靶细胞亲和力低的特点。为了克服这些挑战,纳米颗粒系统已进入疾病治疗领域。聚(d,l-丙交酯-乙交酯)(PLGA)是构建药物纳米载体最相关的生物相容性材料之一。了解这种共聚物的物理化学性质及其生物学命运的现有知识将有助于设计高效的基于PLGA的纳米药物。纳米颗粒结构的表面修饰已被提议作为一种必要的功能化手段,以优化其在生物系统中的性能,并使PLGA胶体定位于作用部位。在这篇综述中,提供了关于该共聚物的性质和生物降解的背景知识。简要讨论了制备PLGA纳米颗粒的方法及其体外性能和体内命运。此外,特别关注了当前利用表面修饰策略设计PLGA纳米颗粒的研究分析,即聚乙二醇化以及使用聚乙二醇替代物、表面活性剂和脂质来提高体外和体内稳定性,并为纳米颗粒创建亲水外壳或隐形保护。最后,该综述还介绍了使用配体修饰PLGA纳米药物表面的最新情况。