Ramírez-Estrada Karla, Altabella Teresa, Onrubia Miriam, Moyano Elisabeth, Notredame Cedric, Osuna Lidia, Vanden Bossche Robin, Goossens Alain, Cusido Rosa M, Palazon Javier
Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola, Barcelona, Spain.
Plant Biotechnol J. 2016 Jan;14(1):85-96. doi: 10.1111/pbi.12359. Epub 2015 Apr 21.
Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.
植物细胞培养构成了用于生产具有药理活性的植物次生代谢产物的生态友好型生物技术平台,也是扩展我们对次生代谢认识的合适系统。尽管紫杉醇具有很高的附加值,紫杉烷作为抗癌化合物也很重要,但其生物合成的几个方面仍不清楚。在这项工作中,通过互补DNA扩增片段长度多态性(cDNA-AFLP)对茉莉酸诱导的欧洲红豆杉细胞培养物进行全基因组表达分析,结果表明在目标培养物中,广泛的诱导子诱导的基因重编程与紫杉烷产量增加之间存在相关性。随后的电子分析使我们能够鉴定出15个具有茉莉酸诱导差异表达的基因,作为参与紫杉烷生物合成五个未知步骤的编码酶的基因的推定候选者。其中,TB768基因与先前报道的其他编码酰基辅酶A连接酶的基因具有很强的同源性,包括非常相似的预测三维结构,因此表明其在紫杉醇侧链形成中起作用。功能分析证实,TB768基因编码一种定位于细胞质的酰基辅酶A连接酶,能够将β-苯丙氨酸以及香豆酸转化为它们各自的衍生物辅酶A酯。在紫杉醇生物合成途径的最后步骤之一中,β-苯丙氨酰辅酶A与巴卡亭III相连。该基因的鉴定将有助于通过代谢工程或合成生物学方法建立可持续的紫杉醇生产系统。