Lopez G H, Morrison J, Condon J A, Wilson B, Martin J R, Liew Y-W, Flower R L, Hyland C A
Research and Development, Australian Red Cross Blood Service, Kelvin Grove, QLD, Australia.
Red Cell Reference Laboratory, Australian Red Cross Blood Service, Kelvin Grove, QLD, Australia.
Vox Sang. 2015 Oct;109(3):296-303. doi: 10.1111/vox.12273. Epub 2015 Apr 20.
Duffy blood group phenotypes can be predicted by genotyping for single nucleotide polymorphisms (SNPs) responsible for the Fy(a) /Fy(b) polymorphism, for weak Fy(b) antigen, and for the red cell null Fy(a-b-) phenotype. This study correlates Duffy phenotype predictions with serotyping to assess the most reliable procedure for typing.
Samples, n = 155 (135 donors and 20 patients), were genotyped by high-resolution melt PCR and by microarray. Samples were in three serology groups: 1) Duffy patterns expected n = 79, 2) weak and equivocal Fy(b) patterns n = 29 and 3) Fy(a-b-) n = 47 (one with anti-Fy3 antibody).
Discrepancies were observed for five samples. For two, SNP genotyping predicted weak Fy(b) expression discrepant with Fy(b-) (Group 1 and 3). For three, SNP genotyping predicted Fy(a) , discrepant with Fy(a-b-) (Group 3). DNA sequencing identified silencing mutations in these FYA alleles. One was a novel FYA 719delG. One, the sample with the anti-Fy3, was homozygous for a 14-bp deletion (FY*01N.02); a true null.
Both the high-resolution melting analysis and SNP microarray assays were concordant and showed genotyping, as well as phenotyping, is essential to ensure 100% accuracy for Duffy blood group assignments. Sequencing is important to resolve phenotype/genotype conflicts which here identified alleles, one novel, that carry silencing mutations. The risk of alloimmunisation may be dependent on this zygosity status.
通过对导致Fy(a)/Fy(b)多态性、弱Fy(b)抗原以及红细胞Fy(a-b-)无效表型的单核苷酸多态性(SNP)进行基因分型,可预测达菲血型表型。本研究将达菲表型预测与血清分型相关联,以评估最可靠的分型方法。
对155份样本(135名献血者和20名患者)采用高分辨率熔解PCR和微阵列进行基因分型。样本分为三个血清学组:1)预期达菲模式,n = 79;2)弱和不确定的Fy(b)模式,n = 29;3)Fy(a-b-),n = 47(其中一份含抗Fy3抗体)。
观察到5份样本存在差异。其中2份样本,SNP基因分型预测的弱Fy(b)表达与Fy(b-)不符(第1组和第3组)。另外3份样本,SNP基因分型预测为Fy(a),与Fy(a-b-)不符(第3组)。DNA测序在这些FYA等位基因中鉴定出沉默突变。其中一个是新的FYA 719delG。含抗Fy3的那份样本为14 bp缺失的纯合子(FY*01N.02),是真正的无效型。
高分辨率熔解分析和SNP微阵列检测结果一致,表明基因分型以及表型分析对于确保达菲血型分型100%的准确性至关重要。测序对于解决表型/基因型冲突很重要,在此过程中鉴定出了携带沉默突变的等位基因,其中一个是新的。同种免疫的风险可能取决于这种纯合子状态。