Heinken Almut, Thiele Ines
a Luxembourg Center for Systems Biomedicine ; University of Luxembourg ; Belval , Luxembourg.
Gut Microbes. 2015;6(2):120-30. doi: 10.1080/19490976.2015.1023494.
The gut microbiota is well known to affect host metabolic phenotypes. The systemic effects of the gut microbiota on host metabolism are generally evaluated via the comparison of germfree and conventional mice, which is impossible to perform for humans. Hence, it remains difficult to determine the impact of the gut microbiota on human metabolic phenotypes. We demonstrate that a constraint-based modeling framework that simulates "germfree" and "ex-germfree" human individuals can partially fill this gap and allow for in silico predictions of systemic human-microbial co-metabolism. To this end, we constructed the first constraint-based host-microbial community model, comprising the most comprehensive model of human metabolism and 11 manually curated, validated metabolic models of commensals, probiotics, pathogens, and opportunistic pathogens. We used this host-microbiota model to predict potential metabolic host-microbe interactions under 4 in silico dietary regimes. Our model predicts that gut microbes secrete numerous health-relevant metabolites into the lumen, thereby modulating the molecular composition of the body fluid metabolome. Our key results include the following: 1. Replacing a commensal community with pathogens caused a loss of important host metabolic functions. 2. The gut microbiota can produce important precursors of host hormone synthesis and thus serves as an endocrine organ. 3. The synthesis of important neurotransmitters is elevated in the presence of the gut microbiota. 4. Gut microbes contribute essential precursors for glutathione, taurine, and leukotrienes. This computational modeling framework provides novel insight into complex metabolic host-microbiota interactions and can serve as a powerful tool with which to generate novel, non-obvious hypotheses regarding host-microbe co-metabolism.
众所周知,肠道微生物群会影响宿主的代谢表型。肠道微生物群对宿主代谢的全身影响通常通过无菌小鼠和普通小鼠的比较来评估,而这对人类来说是无法做到的。因此,仍然难以确定肠道微生物群对人类代谢表型的影响。我们证明,一个基于约束的建模框架,该框架模拟“无菌”和“无菌后”的人类个体,可以部分填补这一空白,并允许对全身人类-微生物共代谢进行计算机模拟预测。为此,我们构建了第一个基于约束的宿主-微生物群落模型,该模型包括最全面的人类代谢模型以及11个经过人工策划、验证的共生菌、益生菌、病原体和机会致病菌的代谢模型。我们使用这个宿主-微生物群模型来预测4种计算机模拟饮食方案下潜在的宿主-微生物代谢相互作用。我们的模型预测,肠道微生物会向肠腔分泌大量与健康相关的代谢物,从而调节体液代谢组的分子组成。我们的关键结果如下:1. 用病原体取代共生菌群落会导致宿主重要代谢功能的丧失。2. 肠道微生物群可以产生宿主激素合成的重要前体,因此可作为一个内分泌器官。3. 在肠道微生物群存在的情况下,重要神经递质的合成会增加。4. 肠道微生物为谷胱甘肽、牛磺酸和白三烯提供必需的前体。这个计算建模框架为复杂的宿主-微生物群代谢相互作用提供了新的见解,并可作为一个强大的工具,用于生成关于宿主-微生物共代谢的新颖、非显而易见的假设。