Suppr超能文献

整合线粒体能量学、氧化还原和 ROS 代谢网络:双室模型。

Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.

机构信息

Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore Maryland, USA.

出版信息

Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.

Abstract

To understand the mechanisms involved in the control and regulation of mitochondrial reactive oxygen species (ROS) levels, a two-compartment computational mitochondrial energetic-redox (ME-R) model accounting for energetic, redox, and ROS metabolisms is presented. The ME-R model incorporates four main redox couples (NADH/NAD(+), NADPH/NADP(+), GSH/GSSG, Trx(SH)(2)/TrxSS). Scavenging systems-glutathione, thioredoxin, superoxide dismutase, catalase-are distributed in mitochondrial matrix and extra-matrix compartments, and transport between compartments of ROS species (superoxide: O(2)(⋅-), hydrogen peroxide: H(2)O(2)), and GSH is also taken into account. Model simulations are compared with experimental data obtained from isolated heart mitochondria. The ME-R model is able to simulate: i), the shape and order of magnitude of H(2)O(2) emission and dose-response kinetics observed after treatment with inhibitors of the GSH or Trx scavenging systems and ii), steady and transient behavior of ΔΨ(m) and NADH after single or repetitive pulses of substrate- or uncoupler-elicited energetic-redox transitions. The dynamics of the redox environment in both compartments is analyzed with the model following substrate addition. The ME-R model represents a useful computational tool for exploring ROS dynamics, the role of compartmentation in the modulation of the redox environment, and how redox regulation participates in the control of mitochondrial function.

摘要

为了理解线粒体活性氧(ROS)水平控制和调节的机制,提出了一个包含能量代谢、氧化还原代谢和 ROS 代谢的两室计算线粒体能量-氧化还原(ME-R)模型。ME-R 模型纳入了四个主要的氧化还原偶(NADH/NAD(+)、NADPH/NADP(+)、GSH/GSSG、Trx(SH)(2)/TrxSS)。清除系统-谷胱甘肽、硫氧还蛋白、超氧化物歧化酶、过氧化氢酶-分布在线粒体基质和细胞外基质隔间中,并且 ROS 物质(超氧化物:O(2)(⋅-)、过氧化氢:H(2)O(2))和 GSH 在隔间之间的运输也被考虑在内。模型模拟与从分离的心肌线粒体获得的实验数据进行了比较。ME-R 模型能够模拟:i),在用 GSH 或硫氧还蛋白清除系统的抑制剂处理后观察到的 H(2)O(2)发射的形状和量级以及剂量反应动力学;ii),在单个或重复的底物或解偶联剂引发的能量-氧化还原转换脉冲后,ΔΨ(m)和 NADH 的稳态和瞬态行为。模型在添加底物后分析两个隔间中氧化还原环境的动力学。ME-R 模型代表了一种用于探索 ROS 动力学、隔室化在调节氧化还原环境中的作用以及氧化还原调节如何参与线粒体功能控制的有用计算工具。

相似文献

1
Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
Biophys J. 2013 Jan 22;104(2):332-43. doi: 10.1016/j.bpj.2012.11.3808.
2
Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
Biochim Biophys Acta. 2014 Feb;1837(2):287-95. doi: 10.1016/j.bbabio.2013.11.007. Epub 2013 Nov 20.
3
Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
J Gen Physiol. 2012 Jun;139(6):479-91. doi: 10.1085/jgp.201210772. Epub 2012 May 14.
4
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
5
Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
6
Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study.
PLoS Comput Biol. 2017 Jun 9;13(6):e1005588. doi: 10.1371/journal.pcbi.1005588. eCollection 2017 Jun.
7
Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status.
J Biol Chem. 2007 Jul 27;282(30):21889-900. doi: 10.1074/jbc.M702841200. Epub 2007 May 31.
8
Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
Redox Biol. 2016 Aug;8:110-8. doi: 10.1016/j.redox.2015.12.010. Epub 2015 Dec 31.
9
Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
J Mol Cell Cardiol. 2011 Nov;51(5):632-9. doi: 10.1016/j.yjmcc.2011.05.007. Epub 2011 May 27.

引用本文的文献

2
Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin.
Antioxidants (Basel). 2025 Feb 18;14(2):235. doi: 10.3390/antiox14020235.
3
Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy.
Front Mol Med. 2024 Apr 29;4:1389456. doi: 10.3389/fmmed.2024.1389456. eCollection 2024.
4
A Computational Model of Endogenous Hydrogen Peroxide Metabolism in Hepatocytes, Featuring a Critical Role for GSH.
Comput Toxicol. 2024 Mar;29. doi: 10.1016/j.comtox.2024.100299. Epub 2024 Jan 23.
7
9
Quantitative modeling of pentose phosphate pathway response to oxidative stress reveals a cooperative regulatory strategy.
iScience. 2022 Jun 28;25(8):104681. doi: 10.1016/j.isci.2022.104681. eCollection 2022 Aug 19.
10
Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology.
Methods Mol Biol. 2022;2399:277-341. doi: 10.1007/978-1-0716-1831-8_13.

本文引用的文献

1
Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
J Gen Physiol. 2012 Jun;139(6):479-91. doi: 10.1085/jgp.201210772. Epub 2012 May 14.
2
The contribution of thioredoxin-2 reductase and glutathione peroxidase to H(2)O(2) detoxification of rat brain mitochondria.
Biochim Biophys Acta. 2012 Oct;1817(10):1901-6. doi: 10.1016/j.bbabio.2012.02.023. Epub 2012 Feb 28.
3
Updates on "endoplasmic reticulum redox".
Antioxid Redox Signal. 2012 Apr 15;16(8):760-2. doi: 10.1089/ars.2011.4463. Epub 2012 Jan 13.
4
Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria.
J Biol Chem. 2011 Sep 23;286(38):33669-77. doi: 10.1074/jbc.M111.284612. Epub 2011 Aug 5.
5
Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach.
Biophys J. 2011 Jun 22;100(12):2894-903. doi: 10.1016/j.bpj.2011.05.027.
6
Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
Free Radic Biol Med. 2011 Jul 1;51(1):160-70. doi: 10.1016/j.freeradbiomed.2011.04.007. Epub 2011 Apr 13.
7
Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain.
PLoS Comput Biol. 2011 Mar;7(3):e1001115. doi: 10.1371/journal.pcbi.1001115. Epub 2011 Mar 31.
8
The logic of kinetic regulation in the thioredoxin system.
BMC Syst Biol. 2011 Jan 25;5:15. doi: 10.1186/1752-0509-5-15.
9
Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates.
J Biol Chem. 2010 Dec 17;285(51):39646-54. doi: 10.1074/jbc.M110.164160. Epub 2010 Oct 11.
10
Mitochondrial proton and electron leaks.
Essays Biochem. 2010;47:53-67. doi: 10.1042/bse0470053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验