Suppr超能文献

细胞内到器官间的线粒体通讯在健康和疾病中的横纹肌

Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease.

机构信息

Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9019 Tromsø, Norway.

Veneto Institute of Molecular Medicine, 35129 Padova, Italy.

出版信息

Endocr Rev. 2023 Jul 11;44(4):668-692. doi: 10.1210/endrev/bnad004.

Abstract

Mitochondria sense both biochemical and energetic input in addition to communicating signals regarding the energetic state of the cell. Increasingly, these signaling organelles are recognized as key for regulating different cell functions. This review summarizes recent advances in mitochondrial communication in striated muscle, with specific focus on the processes by which mitochondria communicate with each other, other organelles, and across distant organ systems. Intermitochondrial communication in striated muscle is mediated via conduction of the mitochondrial membrane potential to adjacent mitochondria, physical interactions, mitochondrial fusion or fission, and via nanotunnels, allowing for the exchange of proteins, mitochondrial DNA, nucleotides, and peptides. Within striated muscle cells, mitochondria-organelle communication can modulate overall cell function. The various mechanisms by which mitochondria communicate mitochondrial fitness to the rest of the body suggest that extracellular mitochondrial signaling is key during health and disease. Whereas mitochondria-derived vesicles might excrete mitochondria-derived endocrine compounds, stimulation of mitochondrial stress can lead to the release of fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) into the circulation to modulate whole-body physiology. Circulating mitochondrial DNA are well-known alarmins that trigger the immune system and may help to explain low-grade inflammation in various chronic diseases. Impaired mitochondrial function and communication are central in common heart and skeletal muscle pathologies, including cardiomyopathies, insulin resistance, and sarcopenia. Lastly, important new advances in research in mitochondrial endocrinology, communication, medical horizons, and translational aspects are discussed.

摘要

线粒体除了传递关于细胞能量状态的信号外,还能感知生化和能量输入。越来越多的证据表明,这些信号细胞器对于调节不同的细胞功能至关重要。

本文综述了近年来在骨骼肌中线粒体通讯的研究进展,特别关注了线粒体之间、与其他细胞器以及跨越远距离器官系统进行通讯的过程。

在骨骼肌中,线粒体之间的通讯是通过传递线粒体膜电位到相邻的线粒体、物理相互作用、线粒体融合或分裂以及通过纳米管来介导的,从而允许蛋白质、线粒体 DNA、核苷酸和肽的交换。在骨骼肌细胞中,线粒体-细胞器通讯可以调节整体细胞功能。线粒体将其健康状况传递给身体其他部位的各种机制表明,细胞外线粒体信号在健康和疾病中至关重要。

虽然线粒体衍生的囊泡可能会排出线粒体衍生的内分泌化合物,但线粒体应激的刺激会导致成纤维细胞生长因子 21(FGF21)和生长分化因子 15(GDF15)释放到循环中,以调节全身生理学。循环中的线粒体 DNA 是众所周知的警报素,可触发免疫系统,并可能有助于解释各种慢性疾病中的低度炎症。

线粒体功能和通讯的受损是常见的心脏和骨骼肌病理学(包括心肌病、胰岛素抵抗和肌肉减少症)的核心问题。

最后,讨论了线粒体内分泌学、通讯、医学前景和转化方面的重要新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验