Suppr超能文献

将超微弱光子发射分析整合到线粒体研究中。

Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research.

作者信息

Van Wijk Roeland, Van Wijk Eduard P A, Pang Jingxiang, Yang Meina, Yan Yu, Han Jinxiang

机构信息

Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands.

Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China.

出版信息

Front Physiol. 2020 Jul 8;11:717. doi: 10.3389/fphys.2020.00717. eCollection 2020.

Abstract

Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.

摘要

线粒体曾一度被单纯视为细胞的能量来源,如今人们认识到,除了产生能量外,它还执行多种重要功能。自20世纪80年代发现致病性线粒体DNA缺陷以来,研究进展揭示了越来越多的常见人类疾病,这些疾病有着涉及线粒体功能障碍的潜在发病机制。这种功能障碍的一个主要因素是活性氧(ROS),它影响线粒体与细胞核之间的相互作用以及与表观基因组的联系,这种影响为致病机制提供了解释。关于这些机制,我们应该考虑到线粒体产生了大部分超微弱光子发射(UPE),这一方面常常被忽视——这种发射可能用作ROS的检测方法,从而为线粒体功能障碍的非侵入性诊断提供新机会。在本文中,我们概述了1960年至2020年期间线粒体相关研究的三个相关领域:(a)呼吸与能量产生,(b)与呼吸相关的自由基和其他ROS种类的产生,以及(c)与ROS和应激相关的超微弱光子发射。首先,我们概述了这些研究领域最初是如何相互独立发展的——在此之后,我们的综述旨在展示它们在后期发展阶段的逐步整合。有人认为,进一步推动对UPE的研究可能有潜力促进现代线粒体研究的进展及其在医学中的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef0b/7360823/bf72d3567eec/fphys-11-00717-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验