Suppr超能文献

风险评分模型以辅助预测成人心脏手术相关的输血和大量输血。

Risk scores to facilitate preoperative prediction of transfusion and large volume blood transfusion associated with adult cardiac surgery.

机构信息

School of Social and Community Medicine, University of Bristol, Bristol, UK Dr Foster Unit, Imperial College London, London, UK.

School of Social and Community Medicine, University of Bristol, Bristol, UK.

出版信息

Br J Anaesth. 2015 May;114(5):757-66. doi: 10.1093/bja/aeu483. Epub 2015 Jan 16.

Abstract

BACKGROUND

The aim of this study was to develop two novel risk prediction scores for transfusion and bleeding that would be used to inform treatment decisions, quality assurance, and clinical trial design in cardiac surgery.

METHODS

Clinical data prospectively collected from 26 UK cardiac surgical centres and a single European centre were used to develop two risk prediction models: one for any red blood cell (RBC) transfusion, and the other for large volume blood transfusion (≥4 RBC units; LVBT), an index of severe blood loss. 'Complete case' data were available for 24 749 patients. Multiple imputation was used for missing covariate data (typically <5% per variable), with the imputed data set containing 39 970 patients. Risk models were developed in the complete case data set, with internal validation using leave-one-centre-out cross-validation. The final selected models were fitted to the imputed data set. Final risk scores were then compared with the performance of three existing scores: the Transfusion Risk and Clinical Knowledge score (TRACK), the Transfusion Risk Understanding Scoring Tool (TRUST), and the Papworth Bleeding Risk Score (BRiSc).

RESULTS

The area under the receiver operating characteristic curve (AUC) was 0.77 (95% confidence interval 0.77-0.77) for the any RBC transfusion score and AUC 0.80 (0.79-0.80) for the LVBT score in the imputed data set. The LVBT model also showed excellent discrimination (Hosmer-Lemeshow P=0.32). In the imputed data set, the AUCs for the TRACK and TRUST scores for any RBC transfusion were 0.71 and 0.71, respectively, and for LVBT the AUC for the BRiSc score was 0.69.

CONCLUSIONS

Two new risk scores for any RBC transfusion or LVBT among cardiac surgery patients have excellent discrimination, and could inform clinical decision making.

摘要

背景

本研究旨在开发两种新的输血和出血风险预测评分,用于指导心脏手术中的治疗决策、质量保证和临床试验设计。

方法

从 26 家英国心脏外科中心和 1 家欧洲中心前瞻性收集的临床数据用于开发两种风险预测模型:一种用于任何红细胞(RBC)输血,另一种用于大量输血(≥4 RBC 单位;LVBT),这是严重失血的指标。“完整病例”数据可用于 24749 例患者。对于缺失协变量数据(通常每个变量<5%),使用多重插补,插补数据集包含 39970 例患者。风险模型在完整病例数据集开发,并使用留一中心外交叉验证进行内部验证。最终选择的模型拟合到插补数据集。然后比较最终风险评分与三种现有评分的性能:输血风险和临床知识评分(TRACK)、输血风险理解评分工具(TRUST)和 Papworth 出血风险评分(BRiSc)。

结果

在插补数据集中,任何 RBC 输血评分的接受者操作特征曲线下面积(AUC)为 0.77(95%置信区间 0.77-0.77),LVBT 评分的 AUC 为 0.80(0.79-0.80)。LVBT 模型也表现出极好的区分度(Hosmer-Lemeshow P=0.32)。在插补数据集中,TRACK 和 TRUST 评分的任何 RBC 输血 AUC 分别为 0.71 和 0.71,而 BRiSc 评分的 AUC 为 0.69。

结论

两种新的心脏手术患者任何 RBC 输血或 LVBT 的风险评分具有极好的区分度,可用于指导临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验