§Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
Environ Sci Technol. 2015 May 19;49(10):5956-64. doi: 10.1021/es506097c. Epub 2015 May 5.
Microbe-mediated arsenic (As) redox reactions play an important role in the biogeochemical cycling of As. Reduction of arsenate [As(V)] generally leads to As mobilization in paddy soils and increased As availability to rice plants, whereas oxidation of arsenite [As(III)] results in As immobilization. A novel chemoautotrophic As(III)-oxidizing bacterium, designated strain SY, was isolated from an As-contaminated paddy soil. The isolate was able to derive energy from the oxidation of As(III) to As(V) under both aerobic and anaerobic conditions using O2 or NO3(-) as the respective electron acceptor. Inoculation of the washed SY cells into a flooded soil greatly enhanced As(III) oxidation to As(V) both in the solution and adsorbed phases of the soil. Strain SY is phylogenetically closely related to Paracoccus niistensis with a 16S rRNA gene similarity of 96.79%. The isolate contains both the denitrification and ribulose 1,5-bisphosphate carboxylase/oxygenase gene clusters, underscoring its ability to denitrify and to fix CO2 while coupled to As(III) oxidation. Deletion of the aioA gene encoding the As(III) oxidase subunit A abolished the As(III) oxidation ability of strain SY and led to increased sensitivity to As(III), suggesting that As(III) oxidation is a detoxification mechanism in this bacterium under aerobic and heterotrophic growth conditions. Analysis of the aioA gene clone library revealed that the majority of the As(III)-oxidizing bacteria in the soil were closely related to the genera Paracoccus of α-Proteobacteria. Our results provide direct evidence for As(III) oxidation by Paracoccus species and suggest that these species may play an important role in As(III) oxidation in paddy soils under both aerobic and denitrifying conditions.
微生物介导的砷(As)氧化还原反应在 As 的生物地球化学循环中起着重要作用。砷酸盐[As(V)]的还原通常会导致稻田中 As 的迁移,增加水稻植物对 As 的利用,而亚砷酸盐[As(III)]的氧化则会导致 As 的固定。从砷污染的稻田土壤中分离到一种新型的化能自养砷(III)氧化细菌,命名为 SY 菌株。该分离株能够在有氧和无氧条件下,分别利用 O2 或 NO3(-)作为电子受体,将 As(III)氧化为 As(V)来获取能量。将洗涤过的 SY 细胞接种到淹水土壤中,大大增强了土壤中溶液和吸附相中亚砷酸盐(III)向砷酸盐(V)的氧化。SY 菌株与 Paracoccus niistensis 的 16S rRNA 基因相似度为 96.79%,在系统发育上非常接近。该分离株同时含有反硝化和核酮糖 1,5-二磷酸羧化酶/加氧酶基因簇,强调了其在与 As(III)氧化偶联时进行反硝化和固定 CO2 的能力。编码 As(III)氧化酶亚基 A 的 aioA 基因缺失消除了 SY 菌株的 As(III)氧化能力,并导致对 As(III)的敏感性增加,表明在有氧和异养生长条件下,As(III)氧化是该细菌的一种解毒机制。对 aioA 基因克隆文库的分析表明,土壤中大多数 As(III)氧化细菌与α-变形菌纲的 Paracoccus 属密切相关。我们的研究结果为 Paracoccus 属物种的 As(III)氧化提供了直接证据,并表明这些物种在有氧和反硝化条件下的稻田中可能在 As(III)氧化中发挥重要作用。