Suppr超能文献

利用蒙特卡洛展开模拟实现二氢叶酸还原酶的热稳定性及其功能后果

Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences.

作者信息

Tian Jian, Woodard Jaie C, Whitney Andrew, Shakhnovich Eugene I

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.

Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2015 Apr 23;11(4):e1004207. doi: 10.1371/journal.pcbi.1004207. eCollection 2015 Apr.

Abstract

Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r=0.65-0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations.

摘要

设计具有所需热性质的蛋白质对于科学和生物技术应用至关重要。在此,我们开发了一种理论方法,可从非平衡展开模拟预测突变对蛋白质稳定性的影响。我们基于表观模拟解链温度建立了一种相对度量,该度量与模拟长度无关,并且在某些假设下与平衡稳定性成正比,我们通过广泛的模拟和实验数据证明了这一理论发展。使用基于全原子蒙特卡罗展开模拟的新方法,我们对二氢叶酸还原酶(DHFR)进行了饱和诱变,DHFR是抗生素和化疗药物的关键靶点。该方法预测了500多个稳定突变,其中几个被选用于详细的计算和实验分析。我们发现野生型DHFR和42个突变体的预测解链温度与实验测定的解链温度以及展开变性剂浓度之间存在高度显著的相关性,r = 0.65 - 0.68。天然态能量与实验变性温度之间的相关性要弱得多,这表明熵在蛋白质稳定性中起着重要作用。最稳定的点突变是D27F,它位于蛋白质的活性位点,使其失活。然而,对于活性位点之外的其他突变,我们观察到热稳定性与催化活性之间存在微弱但具有统计学意义的正相关,这表明DHFR不存在稳定性 - 活性权衡。通过组合我们方法预测的稳定突变,我们创建了一个高度稳定且具有催化活性的大肠杆菌DHFR突变体,其测量的变性温度比野生型高7.2°C。对DHFR和其他几种蛋白质的预测结果表明,基于展开模拟的计算方法作为发现稳定突变的通用技术是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50b9/4407897/3dd744ed4b7b/pcbi.1004207.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验