Gambhir Manoj, Clark Thomas A, Cauchemez Simon, Tartof Sara Y, Swerdlow David L, Ferguson Neil M
Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia; Modeling Unit, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America; IHRC, Inc., Atlanta, Georgia, United States of America.
Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, NCIRD, CDC, Atlanta, Georgia, United States of America.
PLoS Comput Biol. 2015 Apr 23;11(4):e1004138. doi: 10.1371/journal.pcbi.1004138. eCollection 2015 Apr.
Over the past ten years the incidence of pertussis in the United States (U.S.) has risen steadily, with 2012 seeing the highest case number since 1955. There has also been a shift over the same time period in the age group reporting the largest number of cases (aside from infants), from adolescents to 7-11 year olds. We use epidemiological modelling and a large case incidence dataset to explain the upsurge. We investigate several hypotheses for the upsurge in pertussis cases by fitting a suite of dynamic epidemiological models to incidence data from the National Notifiable Disease Surveillance System (NNDSS) between 1990-2009, as well as incidence data from a variety of sources from 1950-1989. We find that: the best-fitting model is one in which vaccine efficacy and duration of protection of the acellular pertussis (aP) vaccine is lower than that of the whole-cell (wP) vaccine, (efficacy of the first three doses 80% [95% CI: 78%, 82%] versus 90% [95% CI: 87%, 94%]), increasing the rate at which disease is reported to NNDSS is not sufficient to explain the upsurge and 3) 2010-2012 disease incidence is predicted well. In this study, we use all available U.S. surveillance data to: 1) fit a set of mathematical models and determine which best explains these data and 2) determine the epidemiological and vaccine-related parameter values of this model. We find evidence of a difference in efficacy and duration of protection between the two vaccine types, wP and aP (aP efficacy and duration lower than wP). Future refinement of the model presented here will allow for an exploration of alternative vaccination strategies such as different age-spacings, further booster doses, and cocooning.
在过去十年中,美国百日咳的发病率稳步上升,2012年的病例数达到了1955年以来的最高水平。在同一时期,报告病例数最多的年龄组(不包括婴儿)也发生了变化,从青少年变为7至11岁的儿童。我们使用流行病学建模和一个大型病例发病率数据集来解释这一激增现象。我们通过将一组动态流行病学模型拟合到1990 - 2009年国家法定疾病监测系统(NNDSS)的发病率数据以及1950 - 1989年各种来源的发病率数据,来研究百日咳病例激增的几个假设。我们发现:拟合度最佳的模型是无细胞百日咳(aP)疫苗的效力和保护持续时间低于全细胞(wP)疫苗的模型(前三剂的效力为80% [95%可信区间:78%,82%],而全细胞疫苗为90% [95%可信区间:87%,94%]);向NNDSS报告疾病的速率增加不足以解释病例激增现象;以及能够很好地预测2010 - 2012年的疾病发病率。在本研究中,我们使用了美国所有可用的监测数据来:1)拟合一组数学模型并确定哪一个最能解释这些数据;2)确定该模型的流行病学和疫苗相关参数值。我们发现了两种疫苗类型wP和aP在效力和保护持续时间上存在差异的证据(aP的效力和持续时间低于wP)。此处提出的模型的未来改进将有助于探索替代疫苗接种策略,如不同的年龄间隔、更多的加强剂量和群体免疫策略。