Ding Yi, Fang Huaqiang, Shang Wei, Xiao Yao, Sun Tao, Hou Ning, Pan Lin, Sun Xueting, Ma Qi, Zhou Jingsong, Wang Xianhua, Zhang Xiuqin, Cheng Heping
Institute of Molecular Medicine, Peking University, Beijing, China.
State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China.
J Mol Med (Berl). 2015 Oct;93(10):1119-30. doi: 10.1007/s00109-015-1278-y. Epub 2015 Apr 25.
Central to bioenergetics and reactive oxygen species (ROS) signaling, the mitochondrion plays pivotal roles in the pathogenesis of metabolic diseases. Recent advances have shown that mitochondrial flash ("mitoflash") visualized by the biosensor mt-cpYFP affords a frequency-coded, optical readout linked to mitochondrial ROS production and energy metabolism, at the resolution of a single mitochondrion. To investigate possible mitoflash responses to metabolic stress in insulin resistance (IR), we generated an mt-cpYFP-expressing db/db mouse model with the obesity and IR phenotypes unaltered. In conjunction with in vivo imaging of skeletal muscles, we uncovered a progressive increase of mitoflash frequency along with its morphological changes. Interestingly, enhanced mitochondrial networking occurred at 12 weeks of age, and this was followed by mitochondrial fragmentation at 34 weeks. Pioglitazone treatment normalized mitoflash frequency and morphology while restored mitochondrial respiratory function and insulin sensitivity in 12 weeks mt-cpYFP db/db mice. Mechanistic study revealed that the mitoflash remodeling was associated with altered expression of proteins involved in mitochondrial dynamics and quality control. These findings indicate that mitoflash activity may serve as an optical functional readout of the mitochondria, a robust and sensitive biomarker to gauge IR stresses and their amelioration by therapeutic interventions.
• In vivo detection of mitochondrial flashes in mt-cpYFP-expressing db/db mouse. • Mitoflash frequency increased progressively with disease development. • Mitoflash morphology revealed a biphasic change in mitochondrial networking. • Mitoflash abnormalities and mitochondrial defects are restored by pioglitazone. • Mitoflash may serve as a unique biomarker to gauge metabolic stress in insulin resistance.
线粒体是生物能量学和活性氧(ROS)信号传导的核心,在代谢性疾病的发病机制中起关键作用。最近的研究进展表明,通过生物传感器mt-cpYFP可视化的线粒体闪光(“mitoflash”)在单个线粒体的分辨率下提供了与线粒体ROS产生和能量代谢相关的频率编码光学读数。为了研究胰岛素抵抗(IR)中mitoflash对代谢应激的可能反应,我们构建了一种表达mt-cpYFP的db/db小鼠模型,其肥胖和IR表型未改变。结合骨骼肌的体内成像,我们发现mitoflash频率逐渐增加及其形态变化。有趣的是,在12周龄时线粒体网络增强,随后在34周时线粒体碎片化。吡格列酮治疗使12周龄的mt-cpYFP db/db小鼠的mitoflash频率和形态正常化,同时恢复了线粒体呼吸功能和胰岛素敏感性。机制研究表明,mitoflash重塑与参与线粒体动力学和质量控制的蛋白质表达改变有关。这些发现表明,mitoflash活性可能作为线粒体的光学功能读数,是一种强大而敏感的生物标志物,用于评估IR应激及其通过治疗干预的改善情况。
• 在表达mt-cpYFP的db/db小鼠中体内检测线粒体闪光。• Mitoflash频率随疾病发展逐渐增加。• Mitoflash形态显示线粒体网络有双相变化。• 吡格列酮可恢复mitoflash异常和线粒体缺陷。• Mitoflash可作为评估胰岛素抵抗中代谢应激的独特生物标志物。