Suppr超能文献

使用多模型卡尔曼滤波器对功能磁共振成像数据进行随机动态因果建模。

Stochastic dynamic causal modelling of FMRI data with multiple-model Kalman filters.

作者信息

Osório P, Rosa P, Silvestre C, Figueiredo P

机构信息

Patrícia Figueiredo, D. Phil., Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal, E-mail:

出版信息

Methods Inf Med. 2015;54(3):232-9. doi: 10.3414/ME13-02-0052. Epub 2015 Apr 24.

Abstract

INTRODUCTION

This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Neural Signals and Images".

BACKGROUND

Dynamic Causal Modelling (DCM) is a generic formalism to study effective brain connectivity based on neuroimaging data, particularly functional Magnetic Resonance Imaging (fMRI). Recently, there have been attempts at modifying this model to allow for stochastic disturbances in the states of the model.

OBJECTIVES

This paper proposes the Multiple-Model Kalman Filtering (MMKF) technique as a stochastic identification model discriminating among different hypothetical connectivity structures in the DCM framework; moreover, the performance compared to a similar deterministic identification model is assessed.

METHODS

The integration of the stochastic DCM equations is first presented, and a MMKF algorithm is then developed to perform model selection based on these equations. Monte Carlo simulations are performed in order to investigate the ability of MMKF to distinguish between different connectivity structures and to estimate hidden states under both deterministic and stochastic DCM.

RESULTS

The simulations show that the proposed MMKF algorithm was able to successfully select the correct connectivity model structure from a set of pre-specified plausible alternatives. Moreover, the stochastic approach by MMKF was more effective compared to its deterministic counterpart, both in the selection of the correct connectivity structure and in the estimation of the hidden states.

CONCLUSIONS

These results demonstrate the applicability of a MMKF approach to the study of effective brain connectivity using DCM, particularly when a stochastic formulation is desirable.

摘要

引言

本文是《医学信息方法》关于“生物信号解读:神经信号与图像的先进方法”这一焦点主题的一部分。

背景

动态因果模型(DCM)是一种基于神经影像数据,特别是功能磁共振成像(fMRI)来研究有效脑连接性的通用形式体系。最近,有人尝试对该模型进行修改,以允许模型状态存在随机干扰。

目的

本文提出多模型卡尔曼滤波(MMKF)技术,作为一种在DCM框架中区分不同假设连接结构的随机识别模型;此外,还评估了其与类似确定性识别模型相比的性能。

方法

首先给出随机DCM方程的积分,然后开发一种MMKF算法,基于这些方程进行模型选择。进行蒙特卡罗模拟,以研究MMKF在确定性和随机DCM下区分不同连接结构以及估计隐藏状态的能力。

结果

模拟表明,所提出的MMKF算法能够从一组预先指定的合理备选方案中成功选择正确的连接模型结构。此外,在选择正确的连接结构和估计隐藏状态方面,MMKF的随机方法比其确定性对应方法更有效。

结论

这些结果证明了MMKF方法在使用DCM研究有效脑连接性方面的适用性,特别是在需要随机公式化的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验